Thursday, April 18, 2024
HomeNature NewsA pan-grass transcriptome reveals patterns of mobile divergence in crops

A pan-grass transcriptome reveals patterns of mobile divergence in crops

[ad_1]

  • Woodhouse, M. R. & Hufford, M. B. Parallelism and convergence in post-domestication adaptation in cereal grasses. Philos. Trans. R. Soc. B 374, 20180245 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Wealthy-Griffin, C. et al. Single-cell transcriptomics: a high-resolution avenue for plant useful genomics. Traits Plant Sci. 25, 186–197 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Marioni, J. C. & Arendt, D. How single-cell genomics is altering evolutionary and developmental biology. Annu. Rev. Cell Dev. Biol. 33, 537–553 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shafer, M. E. R. Cross-species evaluation of single-cell transcriptomic information. Entrance. Cell Dev. Biol. 7, 175 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kajala, Ok. et al. Innovation, conservation, and repurposing of gene operate in root cell sort growth. Cell 184, 3333–3348.e19 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Swigonova, Z. et al. On the tetraploid origin of the maize genome. Comp. Funct. Genomics 5, 281–284 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Swigonova, Z. Shut cut up of sorghum and maize genome progenitors. Genome Res. 14, 1916–1923 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kozlova, L. V., Nazipova, A. R., Gorshkov, O. V., Petrova, A. A. & Gorshkova, T. A. Elongating maize root: zone-specific combos of polysaccharides from sort I and sort II major cell partitions. Sci. Rep. 10, 10956 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma, W. et al. The mucilage proteome of maize (Zea mays L.) major roots. J. Proteome Res. 9, 2968–2976 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schittenhelm, S. & Schroetter, S. Comparability of drought tolerance of maize, candy sorghum and sorghum–sudangrass hybrids. J. Agron. Crop Sci. 200, 46–53 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, Y. et al. Differentially regulated orthologs in sorghum and the subgenomes of maize. Plant Cell 29, 1938–1951 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zheng, Z. et al. Shared genetic management of root system structure between Zea mays and Sorghum bicolor. Plant Physiol. 182, 977–991 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McKain, M. R. et al. Ancestry of the 2 subgenomes of maize. Preprint at BioRxiv https://doi.org/10.1101/352351 (2018).

  • Schnable, J. C., Springer, N. M. & Freeling, M. Differentiation of the maize subgenomes by genome dominance and each historical and ongoing gene loss. Proc. Natl Acad. Sci. USA 108, 4069–4074 (2011).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bawa, G., Liu, Z., Yu, X., Qin, A. & Solar, X. Single-cell RNA sequencing for plant analysis: insights and potential advantages. Int. J. Mol. Sci. 23, 4497 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Farmer, A., Thibivilliers, S., Ryu, Ok. H., Schiefelbein, J. & Libault, M. Single-nucleus RNA and ATAC sequencing reveals the influence of chromatin accessibility on gene expression in Arabidopsis roots on the single-cell degree. Mol. Plant 14, 372–383 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

    See also  Rarest of parts yield their secrets and techniques with assist from mighty metals

  • Lengthy, Y. et al. FlsnRNA-seq: protoplasting-free full-length single-nucleus RNA profiling in vegetation. Genome Biol. 22, 66 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marand, A. P., Chen, Z., Gallavotti, A. & Schmitz, R. J. A cis-regulatory atlas in maize at single-cell decision. Cell 184, 3041–3055.e21 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ortiz-Ramírez, C. et al. Floor tissue circuitry regulates organ complexity in maize and Setaria. Science 374, 1247–1252 (2021).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ding, J. et al. Systematic comparability of single-cell and single-nucleus RNA-sequencing strategies. Nat. Biotechnol. 38, 737–746 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ray F. Evert. in Esau’s Plant Anatomy, Meristems, Cells, and Tissues of the Plant Physique: their Construction, Perform, and Growth third edn 99 (Wiley, 2006).

  • Sorenson, R. S., Deshotel, M. J., Johnson, Ok., Adler, F. R. & Sieburth, L. E. Arabidopsis mRNA decay panorama arises from specialised RNA decay substrates, decapping-mediated suggestions, and redundancy. Proc. Natl Acad. Sci. USA 115, E1485–E1494 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lotfollahi, M., Wolf, F. A. & Theis, F. J. scGen predicts single-cell perturbation responses. Nat. Strategies 16, 715–721 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ferrari, C., Manosalva Pérez, N. & Vandepoele, Ok. MINI-EX: integrative inference of single-cell gene regulatory networks in vegetation. Mol. Plant 15, 1807–1824 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Donner, T. J., Sherr, I. & Scarpella, E. Regulation of preprocambial cell state acquisition by auxin signaling in Arabidopsis leaves. Growth 136, 3235–3246 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, S. et al. RppM, encoding a typical CC-NBS-LRR protein, confers resistance to southern corn rust in maize. Entrance. Plant Sci. 13, 951318 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ingram, G. C., Magnard, J. L., Vergne, P., Dumas, C. & Rogowsky, P. M. ZmOCL1, an HDGL2 household homeobox gene, is expressed within the outer cell layer all through maize growth. Plant Mol. Biol. 40, 343–354 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, Z., Tang, J., Srivastava, R., Bassham, D. C. & Howell, S. H. The transcription issue bZIP60 hyperlinks the unfolded protein response to the warmth stress response in maize. Plant Cell 32, 3559–3575 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo, Z. et al. MRG1/2 histone methylation readers and HD2C histone deacetylase affiliate in repression of the florigen gene FT to set a correct flowering time in response to day-length adjustments. New Phytol. 227, 1453–1466 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Grover, C. E. et al. Homoeolog expression bias and expression degree dominance in allopolyploids. New Phytol. 196, 966–971 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lynch, M. & Drive, A. The likelihood of duplicate gene preservation by subfunctionalization. Genetics 154, 459–473 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chaudhary, B. et al. Reciprocal silencing, transcriptional bias and useful divergence of homeologs in polyploid cotton (Gossypium). Genetics 182, 503–517 (2009).

    See also  Causes to Journey Solo with Pure Habitat Adventures

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hughes, T. E., Langdale, J. A. & Kelly, S. The influence of widespread regulatory neofunctionalization on homeolog gene evolution following whole-genome duplication in maize. Genome Res. 24, 1348–1355 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao, M., Zhang, B., Lisch, D. & Ma, J. Patterns and penalties of subgenome differentiation present insights into the character of paleopolyploidy in vegetation. Plant Cell 29, 2974–2994 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, L. et al. Co-expression community evaluation of duplicate genes in maize (Zea mays L.) reveals no subgenome bias. BMC Genomics 17, 1–16 (2016).

    Article 

    Google Scholar
     

  • Birchler, J. A. & Veitia, R. A. Gene stability speculation: connecting problems with dosage sensitivity throughout organic disciplines. Proc. Natl Acad. Sci. USA 109, 14746–14753 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Muyle, A., Marais, G. A. B., Bačovský, V., Hobza, R. & Lenormand, T. Dosage compensation evolution in vegetation: theories, controversies and mechanisms. Philos. Trans. R. Soc. B 377, 20210222 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Walsh, J. R., Woodhouse, M. R., Andorf, C. M. & Sen, T. Z. Tissue-specific gene expression and protein abundance patterns are related to fractionation bias in maize. BMC Plant Biol. 20, 4 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Renny-Byfield, S., Rodgers-Melnick, E. & Ross-Ibarra, J. Gene fractionation and performance within the historical subgenomes of maize. Mol. Biol. Evol. 34, 1825–1832 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, X. et al. Single-cell RNA sequencing of creating maize ears facilitates useful evaluation and trait candidate gene discovery. Dev. Cell 56, 557–568.e6 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rastogi, S. & Liberles, D. A. Subfunctionalization of duplicated genes as a transition state to neofunctionalization. BMC Evol. Biol. 5, 28 (2005).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, J., Shah, M., Ballouz, S., Crow, M. & Gillis, J. CoCoCoNet: conserved and comparative co-expression throughout a various set of species. Nucleic Acids Res. 48, W566–W571 (2021).

    Article 

    Google Scholar
     

  • Van Deynze, A. et al. Nitrogen fixation in a landrace of maize is supported by a mucilage-associated diazotrophic microbiota. PLoS Biol. 16, e2006352 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Galloway, A. F., Knox, P. & Krause, Ok. Sticky mucilages and exudates of vegetation: putative microenvironmental design parts with biotechnological worth. New Phytol. 225, 1461–1469 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Werker, E. & Kislev, M. Mucilage on the foundation floor and root Hairs of sorghum: Heterogeneity in construction, method of manufacturing and website of accumulation. Ann. Bot. 42, 809–816 (1978).

    Article 

    Google Scholar
     

  • Voiniciuc, C., Guenl, M., Schmidt, M. H.-W. & Usadel, B. Extremely branched xylan made by IRX14 and MUCI21 hyperlinks mucilage to Arabidopsis seeds. Plant Physiol. 169, 2481–2495 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

    See also  Why 4 scientists spent a 12 months saying no

  • Wang, B. et al. Genome-wide choice and genetic enchancment throughout fashionable maize breeding. Nat. Genet. 52, 565–571 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Arendt, D. The evolution of cell sorts in animals: rising rules from molecular research. Nat. Rev. Genet. 9, 868–882 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, X. et al. Genome alignment spanning main poaceae lineages reveals heterogeneous evolutionary charges and alters inferred dates for key evolutionary occasions. Mol. Plant 8, 885–898 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Efroni, I., Ip, P.-L., Nawy, T., Mello, A. & Birnbaum, Ok. D. Quantification of cell id from single-cell gene expression profiles. Genome Biol. 16, 9 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stuart, T. et al. Complete integration of single-cell information. Cell 177, 1888–1902 e21 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hafemeister, C. & Satija, R. Normalization and variance stabilization of single-cell RNA-seq information utilizing regularized detrimental binomial regression. Genome Biol. 20, 296 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Raju, S. Ok. Ok., Ledford, S. M. & Niederhuth, C. E. DNA methylation signatures of duplicate gene evolution in angiosperms. Plant Physiol. kiad220 (2023).

  • Hernández-Coronado, M. et al. Plant glutamate receptors mediate a bet-hedging technique between regeneration and protection. Dev. Cell 57, 451–465.e6 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Yanai, I. et al. Genome-wide midrange transcription profiles reveal expression degree relationships in human tissue specification. Bioinformatics 21, 650–659 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Crow, M., Paul, A., Ballouz, S., Huang, Z. J. & Gillis, J. Characterizing the replicability of cell sorts outlined by single cell RNA-sequencing information utilizing MetaNeighbor. Nat. Commun. 9, 884 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fischer, S., Crow, M., Harris, B. D. & Gillis, J. Scaling up reproducible analysis for single-cell transcriptomics utilizing MetaNeighbor. Nat. Protoc. 16, 4031–4067 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hanley, J. A. & McNeil, B. J. A way of evaluating the areas underneath receiver working attribute curves derived from the identical instances. Radiology 148, 839–843 (1983).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression information evaluation. Genome Biol. 19, 15 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Crow, M., Suresh, H., Lee, J. & Gillis, J. Coexpression reveals conserved gene applications that co-vary with cell sort throughout kingdoms. Nucleic Acids Res. 50, 4302–4314 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, T., Guillotin, B., Rahni, R., Birnbaum, Ok. & Wagner, D. A speedy and delicate multiplex, complete mount RNA fluorescence in situ hybridization and immunohistochemistry protocol. Preprint at bioRxiv https://doi.org/10.1101/2023.03.09.531900 (2023).

  • Jackson, D., Veit, B. & Hake, S. Expression of maize KNOTTED1 associated homeobox genes within the shoot apical meristem predicts patterns of morphogenesis within the vegetative shoot. Growth 120, 405–413 (1994).

    Article 
    CAS 

    Google Scholar
     

  • [ad_2]

    RELATED ARTICLES

    Most Popular

    Recent Comments