Saturday, July 6, 2024
HomeNature NewsActin cytoskeleton and complicated cell structure in an Asgard archaeon

Actin cytoskeleton and complicated cell structure in an Asgard archaeon

[ad_1]

  • Zaremba-Niedzwiedzka, Okay. et al. Asgard archaea illuminate the origin of eukaryotic mobile complexity. Nature 541, 353–358 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Liu, Y. et al. Expanded range of Asgard archaea and their relationships with eukaryotes. Nature 593, 553–557 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Eme, L., Spang, A., Lombard, J., Stairs, C. W. & Ettema, T. J. G. Archaea and the origin of eukaryotes. Nat. Rev. Microbiol. 15, 711–723 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Stairs, C. W. & Ettema, T. J. G. The archaeal roots of the eukaryotic dynamic actin cytoskeleton. Curr. Biol. 30, R521–R526 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Akıl, C. et al. Legendary origins of the actin cytoskeleton. Curr. Opin. Cell Biol. 68, 55–63 (2021).

    Article 

    Google Scholar
     

  • Nobs, S. J., MacLeod, F. I., Wong, H. L. & Burns, B. P. Eukarya the chimera: eukaryotes, a secondary innovation of the 2 domains of life? Traits Microbiol. 30, 421–431 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Imachi, H. et al. Isolation of an archaeon on the prokaryote-eukaryote interface. Nature 577, 519–525 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Huet, J., Schnabel, R., Sentenac, A. & Zillig, W. Archaebacteria and eukaryotes possess DNA-dependent RNA polymerases of a standard sort. EMBO J. 2, 1291–1294 (1983).

    Article 
    CAS 

    Google Scholar
     

  • Iwabe, N., Kuma, Okay., Hasegawa, M., Osawa, S. & Miytata, T. Evolutionary relationship of archaebacteria, eubacteria, and eukaryotes inferred from phylogenetic bushes of duplicated genes. Proc. Natl Acad. Sci. USA 86, 9355–9359 (1989).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Spang, A. et al. Complicated archaea that bridge the hole between prokaryotes and eukaryotes. Nature 521, 173–179 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Solar, J. et al. Recoding of cease codons expands the metabolic potential of two novel Asgardarchaeota lineages. ISME Commun. 1, 30 (2021).

    Article 

    Google Scholar
     

  • Seitz, Okay. W., Lazar, C. S., Hinrichs, Okay. U., Teske, A. P. & Baker, B. J. Genomic reconstruction of a novel, deeply branched sediment archaeal phylum with pathways for acetogenesis and sulfur discount. ISME J. 10, 1696–1705 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Seitz, Okay. W. et al. Asgard archaea able to anaerobic hydrocarbon biking. Nat. Commun. 10, 1822 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Cai, M. et al. Various Asgard archaea together with the novel phylum Gerdarchaeota take part in natural matter degradation. Sci. China Life Sci. 63, 886–897 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Farag, I. F., Zhao, R. & Biddle, J. F. “Sifarchaeota,” a novel Asgard phylum from Costa Rican sediment able to polysaccharide degradation and anaerobic methylotrophy. Appl. Environ. Microbiol. 87, e02584-20 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, J. W. et al. Newly found Asgard archaea Hermodarchaeota doubtlessly degrade alkanes and aromatics by way of alkyl/benzyl-succinate synthase and benzoyl-CoA pathway. ISME J. 15, 1826–1843 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Xie, R. et al. Increasing Asgard members within the area of Archaea sheds new mild on the origin of eukaryotes. Sci. China Life Sci. 65, 818–829 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Bulzu, P.-A. et al. Casting mild on Asgardarchaeota metabolism in a sunlit microoxic area of interest. Nat. Microbiol. 4, 1129–1137 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Akıl, C. et al. Insights into the evolution of regulated actin dynamics by way of characterization of primitive gelsolin/cofilin proteins from Asgard archaea. Proc. Natl Acad. Sci. USA 117, 19904–19913 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Lu, Z. et al. Coevolution of eukaryote-like Vps4 and ESCRT-III subunits within the Asgard archaea. Ecol. Evol. Sci. 11, e00417-20 (2020).


    Google Scholar
     

  • Hatano, T. et al. Asgard archaea make clear the evolutionary origins of the eukaryotic ubiquitin-ESCRT equipment. Nat. Commun. 13, 3398 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ettema, T. J. G., Lindås, A. C. & Bernander, R. An actin-based cytoskeleton in archaea. Mol. Microbiol. 80, 1052–1061 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Izoré, T., Kureisaite-Ciziene, D., McLaughlin, S. H. & Löwe, J. Crenactin varieties actin-like double helical filaments regulated by arcadin-2. eLife 5, e21600 (2016).

    Article 

    Google Scholar
     

  • Akıl, C. & Robinson, R. C. Genomes of Asgard archaea encode profilins that regulate actin. Nature 562, 439–443 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Survery, S. et al. Heimdallarchaea encodes profilin with eukaryotic-like actin regulation and polyproline binding. Commun. Biol. 4, 1024 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Inturi, R., Lara, S., Derweesh, M. & Chi, C. N. Structural characterization of a Thorarchaeota profilin signifies eukaryotic-like options however with an prolonged N-terminus. Adv. Biol. 6, e2101323 (2022).

    Article 

    Google Scholar
     

  • Schleper, C. & Sousa, F. L. Meet the kin of our mobile ancestor. Nature 577, 478–479 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Baum, D. A. & Baum, B. An inside-out origin for the eukaryotic cell. BMC Biol. 12, 76 (2014).

    Article 

    Google Scholar
     

    See also  Mosquito blood meals reveal historical past of human infections

  • Manoharan, L. et al. Metagenomes from coastal marine sediments give insights into the ecological function and mobile options of Loki– and Thorarchaeota. mBio 10, e02039-19 (2019).

    Article 

    Google Scholar
     

  • Cai, M. et al. Ecological options and international distribution of Asgard archaea. Sci. Complete Environ. 758, 143581 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wu, F. et al. Distinctive cell parts and scalable gene circulation on the prokaryote–eukaryote boundary revealed by circularized Asgard archaea genomes. Nat. Microbiol. 7, 200–212 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Klappenbach, J. A., Dunbar, J. M. & Schmidt, T. M. rRNA operon copy quantity displays ecological methods of micro organism. Appl. Environ. Microbiol. 66, 1328–1333 (2000).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Curler, B. R. Okay., Stoddard, S. F. & Schmidt, T. M. Exploiting rRNA operon copy quantity to analyze bacterial reproductive methods. Nat. Microbiol. 1, 16160 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Luo, C., Rodriguez-R, L. M. & Konstantinidis, Okay. T. MyTaxa: a complicated taxonomic classifier for genomic and metagenomic sequences. Nucleic Acids Res. 42, e73 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Konstantinidis, Okay. T., Rosselló-Móra, R. & Amann, R. Uncultivated microbes in want of their very own taxonomy. ISME J. 11, 2399–2406 (2017).

    Article 

    Google Scholar
     

  • Penev, P. I. et al. Supersized ribosomal RNA enlargement segments in asgard archaea. Genome Biol. Evol. 12, 1694–1710 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Rosenshine, I., Tchelet, R. & Mevarech, M. The mechanism of DNA switch within the mating system of an archaebacterium. Science 245, 1387–1389 (1989).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Nickell, S., Hegerl, R., Baumeister, W. & Rachel, R. Pyrodictium cannulae enter the periplasmic house however don’t enter the cytoplasm, as revealed by cryo-electron tomography. J. Struct. Biol. 141, 34–42 (2003).

    Article 

    Google Scholar
     

  • Sivabalasarma, S. et al. Evaluation of Cell–Cell Bridges in Haloferax volcanii utilizing electron cryo-tomography reveal a steady cytoplasm and S-layer. Entrance. Microbiol. 11, 612239 (2021).

    Article 

    Google Scholar
     

  • Marguet, E. et al. Membrane vesicles, nanopods and/or nanotubes produced by hyperthermophilic archaea of the genus Thermococcus. Biochem. Soc. Trans. 41, 436–442 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Von Der Ecken, J. et al. Construction of the F-actin-tropomyosin complicated. Nature 519, 114–117 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Yutin, N., Wolf, M. Y., Wolf, Y. I. & Koonin, E. V. The origins of phagocytosis and eukaryogenesis. Biol. Direct 4, 9 (2009).

    Article 

    Google Scholar
     

  • Bernander, R., Lind, A. E. & Ettema, T. J. G. An archaeal origin for the actin cytoskeleton: implications for eukaryogenesis. Commun. Integr. Biol. 4, 664–667 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Van den Ent, F., Amos, L. A. & Löwe, J. Prokaryotic origin of the actin cytoskeleton. Nature 413, 39–44 (2001).

    Article 
    ADS 

    Google Scholar
     

  • Pollard, T. D. & Cooper, J. A. Actin, a central participant in cell form and motion. Science 326, 1208–1212 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Yin, X. et al. Subgroup degree variations of physiological actions in marine Lokiarchaeota. ISME J. 15, 848–861 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Jørgensen, S. L., Thorseth, I. H., Pedersen, R. B., Baumberger, T. & Schleper, C. Quantitative and phylogenetic examine of the deep sea archaeal group in sediments of the arctic mid-ocean spreading ridge. Entrance. Microbiol. 4, 299 (2013).

    Article 

    Google Scholar
     

  • Jorgensen, S. L. et al. Correlating microbial neighborhood profiles with geochemical information in extremely stratified sediments from the Arctic Mid-Ocean Ridge. Proc. Natl Acad. Sci. USA 109, E2846–E2855 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Moreira, D. & López-García, P. Symbiosis between methanogenic archaea and δ-proteobacteria because the origin of eukaryotes: the syntrophic speculation. J. Mol. Evol. 47, 517–530 (1998).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Martin, W. & Müller, M. The hydrogen speculation for the primary eukaryote. Nature 392, 37–41 (1998).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • López-García, P. & Moreira, D. Eukaryogenesis, a syntrophy affair. Nat. Microbiol. 4, 1068–1070 (2019).

    Article 

    Google Scholar
     

  • Spang, A. et al. Proposal of the reverse circulation mannequin for the origin of the eukaryotic cell primarily based on comparative analyses of Asgard archaeal metabolism. Nat. Microbiol. 4, 1138–1148 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the standard of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Ludwig, W. et al. ARB: a software program surroundings for sequence information. Nucleic Acids Res. 32, 1363–1371 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Caporaso, J. G. et al. World patterns of 16S rRNA range at a depth of hundreds of thousands of sequences per pattern. Proc. Natl Acad. Sci. USA 108, 4516–4522 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–12 (2011).

    See also  Degrowth can work — right here’s how science can assist

    Article 

    Google Scholar
     

  • Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome information science utilizing QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Bokulich, N. A. et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 6, 90 (2018).

    Article 

    Google Scholar
     

  • Amann, R. I., Krumholz, L. & Stahl, D. A. Fluorescent-oligonucleotide probing of complete cells for determinative, phylogenetic, and environmental research in microbiology. J. Bacteriol. 172, 762–770 (1990).

    Article 
    CAS 

    Google Scholar
     

  • Raskin, L., Stromley, J. M., Rittmann, B. E. & Stahl, D. A. Group-specific 16S rRNA hybridization probes to explain pure communities of methanogens. Appl. Environ. Microbiol. 60, 1232–1240 (1994).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Yamaguchi, T. et al. In situ DNA-hybridization chain response (HCR): a facilitated in situ HCR system for the detection of environmental microorganisms. Environ. Microbiol. 17, 2532–2541 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Schneider, C. A., Rasband, W. S. & Eliceiri, Okay. W. NIH Picture to ImageJ: 25 years of picture evaluation. Nat. Strategies 9, 671–675 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a versatile trimmer for Illumina sequence information. Bioinformatics 30, 2114–2120 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Prjibelski, A., Antipov, D., Meleshko, D., Lapidus, A. & Korobeynikov, A. Utilizing SPAdes de novo assembler. Curr. Protoc. Bioinform. 70, e102 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Graham, E. D., Heidelberg, J. F. & Tully, B. J. Binsanity: unsupervised clustering of environmental microbial assemblies utilizing protection and affinity propagation. PeerJ 5, e3035 (2017).

    Article 

    Google Scholar
     

  • Wu, Y. W., Simmons, B. A. & Singer, S. W. MaxBin 2.0: an automatic binning algorithm to recuperate genomes from a number of metagenomic datasets. Bioinformatics 32, 605–607 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Kang, D. D., Froula, J., Egan, R. & Wang, Z. MetaBAT, an environment friendly device for precisely reconstructing single genomes from complicated microbial communities. PeerJ 3, 31165 (2015).

  • Alneberg, J. et al. Binning metagenomic contigs by protection and composition. Nat. Strategies 11, 1144–1146 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Sieber, C. M. Okay. et al. Restoration of genomes from metagenomes by way of a dereplication, aggregation and scoring technique. Nat. Microbiol. 3, 836–843 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Chaumeil, P. A., Mussig, A. J., Hugenholtz, P. & Parks, D. H. GTDB-Tk: a toolkit to categorise genomes with the genome taxonomy database. Bioinformatics 36, 1925–1927 (2020).

    CAS 

    Google Scholar
     

  • Wick, R. R., Judd, L. M., Gorrie, C. L. & Holt, Okay. E. Finishing bacterial genome assemblies with multiplex MinION sequencing. Microb. Genom. 3, e000132 (2017).


    Google Scholar
     

  • De Coster, W., D’Hert, S., Schultz, D. T., Cruts, M. & Van Broeckhoven, C. NanoPack: visualizing and processing long-read sequencing information. Bioinformatics 34, 2666–2669 (2018).

    Article 

    Google Scholar
     

  • Kolmogorov, M. et al. metaFlye: scalable long-read metagenome meeting utilizing repeat graphs. Nat. Strategies 17, 1103–1110 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Danecek, P. et al. Twelve years of SAMtools and BCFtools. Gigascience 10, giab008 (2021).

    Article 

    Google Scholar
     

  • Quinlan, A. R. & Corridor, I. M. BEDTools: a versatile suite of utilities for evaluating genomic options. Bioinformatics 26, 841–842 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Shen, W., Le, S., Li, Y. & Hu, F. SeqKit: a cross-platform and ultrafast toolkit for FASTA/Q file manipulation. PLoS ONE 11, e0163962 (2016).

    Article 

    Google Scholar
     

  • Kolmogorov, M., Yuan, J., Lin, Y. & Pevzner, P. A. Meeting of lengthy, error-prone reads utilizing repeat graphs. Nat. Biotechnol. 37, 540–546 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Walker, B. J. et al. Pilon: an built-in device for complete microbial variant detection and genome meeting enchancment. PLoS ONE 9, e112963 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Giguere, D. J. et al. Full and validated genomes from a metagenome. Preprint at bioRxiv https://doi.org/10.1101/2020.04.08.032540 (2020).

  • Seemann, T. Prokka: fast prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Katoh, Okay. & Standley, D. M. MAFFT a number of sequence alignment software program model 7: enhancements in efficiency and usefulness. Mol. Biol. Evol. 30, 772–780 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Criscuolo, A. & Gribaldo, S. BMGE (Block Mapping and Gathering with Entropy): a brand new software program for choice of phylogenetic informative areas from a number of sequence alignments. BMC Evol. Biol. 10, 210 (2010).

    Article 

    Google Scholar
     

  • Minh, B. Q. et al. IQ-TREE 2: new fashions and environment friendly strategies for phylogenetic inference within the genomic period. Mol. Biol. Evol. 37, 1530–1534 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Hoang, D. T., Chernomor, O., Von Haeseler, A., Minh, B. Q. & Vinh, L. S. UFBoot2: enhancing the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518–522 (2018).

    Article 
    CAS 

    Google Scholar
     

    See also  8 Rain Forest Ecotourism Journeys

  • Mistry, J. et al. Pfam: the protein households database in 2021. Nucleic Acids Res. 49, D412–D419 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Kanehisa, M., Sato, Y. & Morishima, Okay. BlastKOALA and GhostKOALA: KEGG instruments for purposeful characterization of genome and metagenome sequences. J. Mol. Biol. 428, 726–731 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Xie, Z. & Tang, H. ISEScan: automated identification of insertion sequence parts in prokaryotic genomes. Bioinformatics 33, 3340–3347 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Li, L., Stoeckert, C. J. J. & Roos, D. S. OrthoMCL: identification of ortholog teams for eukaryotic genomes. Genome Res. 13, 2178–2189 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Farrer, R. A. Synima: a synteny imaging device for annotated genome assemblies. BMC Bioinform. 18, 507 (2017).

    Article 

    Google Scholar
     

  • Haas, B. J., Delcher, A. L., Wortman, J. R. & Salzberg, S. L. DAGchainer: a device for mining segmental genome duplications and synteny. Bioinformatics 20, 3643–3646 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Hao, Z. et al. RIdeogram: drawing SVG graphics to visualise and map genome-wide information on the idiograms. PeerJ Comput. Sci. 6, e251 (2020).

    Article 

    Google Scholar
     

  • Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: accelerated for clustering the next-generation sequencing information. Bioinformatics 28, 3150–3152 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: a device for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).

    Article 

    Google Scholar
     

  • Kalyaanamoorthy, S., Minh, B. Q., Wong, T. Okay. F., Von Haeseler, A. & Jermiin, L. S. ModelFinder: quick mannequin choice for correct phylogenetic estimates. Nat. Strategies 14, 587–589 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Brameyer, S. et al. Outer membrane vesicles facilitate trafficking of the hydrophobic signaling molecule CAI-1 between Vibrio harveyi cells. J. Bacteriol. 200, e00740-17 (2018).

    Article 

    Google Scholar
     

  • Flechsler, J. et al. 2D and 3D immunogold localization on (epoxy) ultrathin sections with and with out osmium tetroxide. Microsc. Res. Tech. 83, 691–705 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Schindelin, J. et al. Fiji: an open-source platform for biological-image evaluation. Nat. Strategies 9, 676–682 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Weiss, G. L., Medeiros, J. M. & Pilhofer, M. in Bacterial Protein Secretion Techniques (eds Journet, L. & Cascales, E.) 353–375 (Humana Press, 2017).

  • Tivol, W. F., Briegel, A. & Jensen, G. J. An improved cryogen for plunge freezing. Microsc. Microanal. 14, 375–379 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Iancu, C. V. et al. Electron cryotomography pattern preparation utilizing the Vitrobot. Nat. Protoc. 1, 2813–2819 (2007).

    Article 

    Google Scholar
     

  • Mastronarde, D. N. Automated electron microscope tomography utilizing sturdy prediction of specimen actions. J. Struct. Biol. 152, 36–51 (2005).

    Article 

    Google Scholar
     

  • Schorb, M., Haberbosch, I., Hagen, W. J. H., Schwab, Y. & Mastronarde, D. N. Software program instruments for automated transmission electron microscopy. Nat. Strategies 16, 471–477 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Hagen, W. J. H., Wan, W. & Briggs, J. A. G. Implementation of a cryo-electron tomography tilt-scheme optimized for top decision subtomogram averaging. J. Struct. Biol. 197, 191–198 (2017).

    Article 

    Google Scholar
     

  • Kremer, J. R., Mastronarde, D. N. & McIntosh, J. R. Pc visualization of three-dimensional picture information utilizing IMOD. J. Struct. Biol. 116, 71–76 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Liu, Y.-T. et al. Isotropic reconstruction for electron tomography with deep studying. Nat. Commun. 13, 6482 (2022).

  • Hylton, R. Okay., Heebner, J. E., Grillo, M. A. & Swulius, M. T. Cofilactin filaments regulate filopodial construction and dynamics in neuronal development cones. Nat. Commun. 13, 2439 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Pettersen, E. F. et al. UCSF ChimeraX: construction visualization for researchers, educators, and builders. Protein Sci. 30, 70–82 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Zivanov, J. et al. A Bayesian strategy to single-particle electron cryo-tomography in RELION-4.0. Preprint at bioRxiv https://doi.org/10.1101/2022.02.28.482229 (2022).

  • Castaño-Díez, D., Kudryashev, M., Arheit, M. & Stahlberg, H. Dynamo: a versatile, user-friendly growth device for subtomogram averaging of cryo-EM information in high-performance computing environments. J. Struct. Biol. 178, 139–151 (2012).

    Article 

    Google Scholar
     

  • Sas-Chen, A. et al. Dynamic RNA acetylation revealed by quantitative cross-evolutionary mapping. Nature 583, 638–643 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Sweeney, B. A. et al. R2DT is a framework for predicting and visualising RNA secondary construction utilizing templates. Nat. Commun. 12, 3494 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Martins, B. et al. Unveiling the polarity of actin filaments by cryo-electron tomography. Construction 29, 488–498 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Wang, Z. et al. The molecular foundation for sarcomere group in vertebrate skeletal muscle. Cell 184, 2135–2150 (2021).

    Article 
    CAS 

    Google Scholar
     

  • He, S. & Scheres, S. H. W. Helical reconstruction in RELION. J. Struct. Biol. 198, 163–176 (2017).

    Article 
    CAS 

    Google Scholar
     

  • [ad_2]

    RELATED ARTICLES

    Most Popular

    Recent Comments