Friday, July 5, 2024
HomeNature NewsExport of defensive glucosinolates is vital for his or her accumulation in...

Export of defensive glucosinolates is vital for his or her accumulation in seeds

[ad_1]

  • Schroeder, J. I. et al. Utilizing membrane transporters to enhance crops for sustainable meals manufacturing. Nature 497, 60–66 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moore, J. W. et al. A not too long ago developed hexose transporter variant confers resistance to a number of pathogens in wheat. Nat. Genet. 47, 1494–1498 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Krattinger, S. G. et al. The wheat sturdy, multipathogen resistance gene Lr34 confers partial blast resistance in rice. Plant Biotechnol. J. 14, 1261–1268 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Oliva, R. et al. Broad-spectrum resistance to bacterial blight in rice utilizing genome enhancing. Nat. Biotechnol. 37, 1344–1350 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nour-Eldin, H. H. et al. Discount of antinutritional glucosinolates in Brassica oilseeds by mutation of genes encoding transporters. Nat. Biotechnol. 35, 377–382 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, J. et al. NRT1.1B is related to root microbiota composition and nitrogen use in field-grown rice. Nat. Biotechnol. 37, 676–684 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nour-Eldin, H. H. et al. NRT/PTR transporters are important for translocation of glucosinolate defence compounds to seeds. Nature 488, 531–534 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Andersen, T. G. et al. Integration of biosynthesis and long-distance transport set up organ-specific glucosinolate profiles in vegetative Arabidopsis. Plant Cell 25, 3133–3145 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jørgensen, M. E. et al. Origin and evolution of transporter substrate specificity inside the NPF household. eLife 6, e19466 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, D. et al. Rhizosecretion of stele-synthesized glucosinolates and their catabolites requires GTR-mediated import in Arabidopsis. J. Exp. Bot. 68, 3205–3214 (2016).

    PubMed Central 

    Google Scholar
     

  • Madsen, S. R., Olsen, C. E., Nour-Eldin, H. H. & Halkier, B. A. Elucidating the position of transport processes in leaf glucosinolate distribution. Plant Physiol. 166, 1450–1462 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, D. et al. GTR-mediated radial import directs accumulation of defensive glucosinolates to sulfur-rich cells within the phloem cap of Arabidopsis inflorescence stem. Mol. Plant 12, 1474–1484 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dreyer, I. Nutrient biking is a crucial mechanism for homeostasis in plant cells. Plant Physiol. 187, 2246–2261 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feeny, P. in Biochemical Interplay Between Crops and Bugs (eds Wallace, J. W. & Mansell, R. L.) 1–40 (Springer, 1976); https://doi.org/10.1007/978-1-4684-2646-5_1.

  • Hunziker, P. et al. Herbivore feeding desire corroborates optimum defence principle for specialised metabolites inside vegetation. Proc. Natl Acad. Sci. USA 118, e2111977118 (2021).

  • Sánchez-Pérez, R. et al. Mutation of a bHLH transcription issue allowed almond domestication. Science 364, 1095–1098 (2019).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Itkin, M. et al. Biosynthesis of antinutritional alkaloids in solanaceous crops is mediated by clustered genes. Science 341, 175–179 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

    See also  Eight billion individuals, SARS-CoV-2 ancestor and unlawful fishing

  • Khazaei, H. et al. Eliminating vicine and convicine, the primary anti-nutritional elements limiting faba bean utilization. Developments Meals Sci. Technol. 91, 549–556 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Alseekh, S. et al. Domestication of crop metabolomes: desired and unintended penalties. Developments Plant Sci. 26, 650–661 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Inglis, I. R., Wadsworth, J. T., Meyer, A. N. & Feare, C. J. Vertebrate injury to 00 and 0 styles of oilseed rape in relation to SMCO and glucosinolate concentrations within the leaves. Crop Prot. 11, 64–68 (1992).

    Article 
    CAS 

    Google Scholar
     

  • Mithen, R. in Breeding for Illness Resistance (eds Johnson, R. & Jellis, G. J.) Vol. 1, 71–83 (Springer, 1992).

  • Chen, S., Petersen, B. L., Olsen, C. E., Schulz, A. & Halkier, B. A. Lengthy-distance phloem transport of glucosinolates in Arabidopsis. Plant Physiol. 127, 194–201 (2001).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ellerbrock, B. L., Kim, J. H. & Jander, G. Contribution of glucosinolate transport to Arabidopsis defence responses. Plant Sign. Behav. 2, 282–283 (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khan, D. et al. Transcriptome atlas of the Arabidopsis funiculus—a examine of maternal seed subregions. Plant J. 82, 41–53 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mugford, S. G. et al. Disruption of adenosine-5′-phosphosulfate kinase in Arabidopsis reduces ranges of sulfated secondary metabolites. Plant Cell 21, 910–927 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ladwig, F. et al. Siliques Are Red1 from Arabidopsis acts as a bidirectional amino acid transporter that’s essential for the amino acid homeostasis of siliques. Plant Physiol. 158, 1643–1655 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Müller, B. et al. Amino acid export in creating Arabidopsis seeds is dependent upon umamit facilitators. Curr. Biol. 25, 3126–3131 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Besnard, J. et al. Arabidopsis UMAMIT24 and 25 are amino acid exporters concerned in seed loading. J. Exp. Bot. 69, 5221–5232 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao, C. et al. Detailed characterization of the UMAMIT proteins supplies perception into their evolution, amino acid transport properties, and position within the plant. J. Exp. Bot. 72, 6400–6417 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fang, Z. T., Kapoor, R., Datta, A. & Okumoto, S. Tissue particular expression of UMAMIT amino acid transporters in wheat. Sci. Rep. 12, 348 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dindas, J. et al. AUX1-mediated root hair auxin inflow governs SCFTIR1/AFB-type Ca2+ signaling. Nat. Commun. 9, 1174 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, L.-Q. et al. Sugar transporters for intercellular change and diet of pathogens. Nature 468, 527–532 (2010).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, L.-Q. et al. Sucrose efflux mediated by SWEET proteins as a key step for phloem transport. Science 335, 207–211 (2012).

    See also  a scientists' information to what’s up there and why

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Payne, R. M. E. et al. An NPF transporter exports a central monoterpene indole alkaloid intermediate from the vacuole. Nat. Crops 3, 16208 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Larsen, B. et al. Identification of iridoid glucoside transporters in Catharanthus roseus. Plant Cell Physiol. 58, 1507–1518 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Belew, Z. M. et al. Identification and characterization of phlorizin transporter from Arabidopsis thaliana and its software for phlorizin manufacturing in Saccharomyces cerevisiae. Preprint at BioRxiv https://doi.org/10.1101/2020.08.14.248047 (2020).

  • Grunewald, S. et al. The tapetal main facilitator NPF2.8 is required for accumulation of flavonol glycosides on the pollen floor in Arabidopsis thaliana. Plant Cell 32, 1727–1748 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kazachkova, Y. et al. The GORKY glycoalkaloid transporter is indispensable for stopping tomato bitterness. Nat. Crops 7, 468–480 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kanstrup, C. & Nour-Eldin, H. H. The rising position of the nitrate and peptide transporter household: NPF in plant specialised metabolism. Curr. Opin. Plant Biol. 68, 102243 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Halkier, B. A. & Xu, D. The ins and outs of transporters at plasma membrane and tonoplast in plant specialised metabolism. Nat. Prod. Rep. 39, 1483–1491 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Slaten, M. L. et al. mGWAS uncovers Gln-glucosinolate seed-specific interplay and its position in metabolic homeostasis. Plant Physiol. 183, 483–500 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schulz, A. et al. Proton-driven sucrose symport and antiport are offered by the vacuolar transporters SUC4 and TMT1/2. Plant J. 68, 129–136 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bezrutczyk, M. et al. Impaired phloem loading in zmsweet13a,b,c sucrose transporter triple knock-out mutants in Zea mays. New Phytol. 218, 594–603 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Karmann, J., Müller, B. & Hammes, U. Z. The lengthy and winding street: transport pathways for amino acids in Arabidopsis seeds. Plant Reprod. 31, 253–261 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, J.-Y. et al. Mobile export of sugars and amino acids: position in feeding different cells and organisms. Plant Physiol. 187, 1893–1914 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • He, Y. et al. Enhancing canola breeding by enhancing a glucosinolate transporter gene missing pure variation. Plant Physiol. 188, 1848–1851 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nintemann, S. J. et al. Localization of the glucosinolate biosynthetic enzymes reveals distinct spatial patterns for the biosynthesis of indole and aliphatic glucosinolates. Physiol. Plant. 163, 138–154 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, H. et al. CRISPR-P 2.0: an improved CRISPR–Cas9 software for genome enhancing in vegetation. Mol. Plant 10, 530–532 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Z.-P. et al. Egg cell-specific promoter-controlled CRISPR/Cas9 effectively generates homozygous mutants for a number of goal genes in Arabidopsis in a single era. Genome Biol. 16, 144 (2015).

    See also  Donated COVID medication begin flowing to poor nations — however can’t meet demand

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tsutsui, H. & Higashiyama, T. pKAMA-ITACHI vectors for extremely environment friendly CRISPR/Cas9-mediated gene knockout in Arabidopsis thaliana. Plant Cell Physiol. 58, 46–56 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Nisar, N., Verma, S., Pogson, B. J. & Cazzonelli, C. I. Inflorescence stem grafting made straightforward in Arabidopsis. Plant Strategies 8, 50 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goedhart, J. et al. Construction-guided evolution of cyan fluorescent proteins in the direction of a quantum yield of 93%. Nat. Commun. 3, 751 (2012).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Kurihara, D., Mizuta, Y., Sato, Y. & Higashiyama, T. ClearSee: a fast optical clearing reagent for whole-plant fluorescence imaging. Growth 142, 4168–4179 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jørgensen, M. E., Crocoll, C., Halkier, B. A. & Nour-Eldin, H. H. Uptake assays in Xenopus laevis oocytes utilizing liquid chromatography-mass spectrometry to detect transport exercise. Bio Protoc. 7, e2581 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jensen, L. M., Jepsen, H. S. Ok., Halkier, B. A., Kliebenstein, D. J. & Burow, M. Pure variation in cross-talk between glucosinolates and onset of flowering in Arabidopsis. Entrance. Plant Sci. 6, 697 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Crocoll, C., Halkier, B. A. & Burow, M. Evaluation and quantification of glucosinolates. Curr. Protoc. Plant Biol. 1, 385–409 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mirza, N., Crocoll, C., Erik Olsen, C. & Ann Halkier, B. Engineering of methionine chain elongation a part of glucoraphanin pathway in E. coli. Metab. Eng. 35, 31–37 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Petersen, A., Crocoll, C. & Halkier, B. A. De novo manufacturing of benzyl glucosinolate in Escherichia coli. Metab. Eng. 54, 24–34 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Edgar, R. C. MUSCLE: a number of sequence alignment with excessive accuracy and excessive throughput. Nucleic Acids Res. 32, 1792–1797 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Criscuolo, A. & Gribaldo, S. BMGE (Block Mapping and Gathering with Entropy): a brand new software program for collection of phylogenetic informative areas from a number of sequence alignments. BMC Evol. Biol. 10, 210 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lemoine, F. et al. NGPhylogeny.fr: new era phylogenetic providers for non-specialists. Nucleic Acids Res. 47, W260–W265 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Trifinopoulos, J., Nguyen, L.-T., von Haeseler, A. & Minh, B. Q. W-IQ-TREE: a quick on-line phylogenetic software for max chance evaluation. Nucleic Acids Res. 44, W232–W235 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v5: a web based software for phylogenetic tree show and annotation. Nucleic Acids Res. 49, W293–W296 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • [ad_2]

    RELATED ARTICLES

    Most Popular

    Recent Comments