Monday, July 8, 2024
HomeNature NewsLengthy-range ordered porous carbons produced from C60

Lengthy-range ordered porous carbons produced from C60

[ad_1]

  • O’Keeffe, M. C60 zeolites? Nature 352, 674–674 (1991).

    Article 
    ADS 

    Google Scholar
     

  • Vanderbilt, D. & Tersoff, J. Detrimental-curvature fullerene analog of C60. Phys. Rev. Lett. 68, 511–513 (1992).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Okada, S., Saito, S. & Oshiyama, A. New metallic crystalline carbon: three dimensionally polymerized C60 fullerite. Phys. Rev. Lett. 83, 1986–1989 (1999).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Krätschmer, W., Lamb, L. D., Fostiropoulos, Okay. & Huffman, D. R. Strong C60: a brand new type of carbon. Nature 347, 354–358 (1990).

    Article 
    ADS 

    Google Scholar
     

  • Quo, Y., Karasawa, N. & Goddard, W. A. Prediction of fullerene packing in C60 and C70 crystals. Nature 351, 464–467 (1991).

    Article 
    ADS 

    Google Scholar
     

  • Heiney, P. A. et al. Orientational ordering transition in stable C60. Phys. Rev. Lett. 66, 2911–2914 (1991).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Samara, G. et al. Stress dependence of the orientational ordering in stable C60. Phys. Rev. Lett. 67, 3136–3139 (1991).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Iwasa, Y. et al. New phases of C60 synthesized at excessive strain. Science 264, 1570–1572 (1994).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Nunez-Regueiro, M., Marques, L., Hodeau, J.-L., Béthoux, O. & Perroux, M. Polymerized fullerite constructions. Phys. Rev. Lett. 74, 278–281 (1995).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wang, G., Komatsu, Okay., Murata, Y. & Shiro, M. Synthesis and X-ray construction of dumb-bell-shaped C120. Nature 387, 583–586 (1997).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Margadonna, S. et al. Li4C60: a polymeric fulleride with a two-dimensional structure and combined interfullerene bonding motifs. J. Am. Chem. Soc. 126, 15032–15033 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Stephens, P. W. et al. Polymeric fullerene chains in RbC60 and KC60. Nature 370, 636–639 (1994).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhao, Y., Poirier, D., Pechman, R. & Weaver, J. Electron stimulated polymerization of stable C60. Appl. Phys. Lett. 64, 577–579 (1994).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Rao, A. et al. Photoinduced polymerization of stable C60 movies. Science 259, 955–957 (1993).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hou, L. et al. Synthesis of a monolayer fullerene community. Nature 606, 507–510 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

    See also  Poor English abilities? New AIs assist researchers to write down higher

  • Wang, L. et al. Lengthy-range ordered carbon clusters: a crystalline materials with amorphous constructing blocks. Science 337, 825–828 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhang, S. et al. Discovery of carbon-based strongest and hardest amorphous materials. Natl Sci. Rev. 9, nwab140 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Shang, Y. et al. Ultrahard bulk amorphous carbon from collapsed fullerene. Nature 599, 599–604 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Tang, H. et al. Synthesis of paracrystalline diamond. Nature 599, 605–610 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Davydov, V. A. et al. Spectroscopic research of pressure-polymerized phases of C60. Phys. Rev. B 61, 11936–11945 (2000).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Okotrub, A. et al. Digital construction and properties of rhombohedrally polymerized C60. J. Chem. Phys. 115, 5637–5641 (2001).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Burger, B., Winter, J. & Kuzmany, H. Dimer and cluster formation in C60 photoreaction. Z. Phys. B 101, 227–233 (1996).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Yannoni, C., Johnson, R., Meijer, G., Bethune, D. & Salem, J. 13C NMR research of the C60 cluster within the stable state: molecular movement and carbon chemical shift anisotropy. J. Phys. Chem. 95, 9–10 (1991).

    Article 
    CAS 

    Google Scholar
     

  • Hiroyama, Y. & Kume, Okay. Excessive decision 13C NMR spectra in graphite chemical shift and diamagnetism. Strong State Commun. 65, 617–619 (1988).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Rachdi, F. et al. Excessive decision NMR research of 1 and two dimensional polymerized C60. Appl. Phys. A 64, 295–299 (1997).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Gugenberger, F. et al. Glass transition in single-crystal C60 studied by high-resolution dilatometry. Phys. Rev. Lett. 69, 3774–3777 (1992).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Sundar, C. et al. Stress-induced polymerization of fullerenes: a comparative research of C60 and C70. Phys. Rev. B 53, 8180–8183 (1996).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Juhás, P., Cherba, D., Duxbury, P., Punch, W. & Billinge, S. Ab initio willpower of solid-state nanostructure. Nature 440, 655–658 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Ni, Okay., Pan, F. & Zhu, Y. Structural evolution of C60 molecular crystal predicted by neural community potential. Adv. Funct. Mater. 32, 2203894 (2022).

    See also  Might an algorithm predict the subsequent pandemic?
  • Huang, S., Shang, C., Zhang, X. & Liu, Z. Materials discovery by combining stochastic floor strolling world optimization with a neural community. Chem. Sci. 8, 6327–6337 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Tycko, R. et al. 13C NMR spectroscopy of OkayxC60: section separation, molecular dynamics, and metallic properties. Science 253, 884–886 (1991).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Pennington, C. H. & Stenger, V. A. Nuclear magnetic resonance of C60 and fulleride superconductors. Rev. Mod. Phys. 68, 855–910 (1996).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Pan, F. et al. Section-changing in graphite assisted by interface cost injection. Nano Lett. 21, 5648–5654 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wågberg, T., Stenmark, P. & Sundqvist, B. Structural points of two-dimensional polymers: Li4C60, Na4C60 and tetragonal C60. Raman spectroscopy and X-ray diffraction. J. Phys. Chem. Solids 65, 317–320 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Wågberg, T. & Johnels, D. 7Li and 23Na MAS stable state NMR research of Na4C60 and Li4C60. J. Phys. Chem. Solids 67, 1091–1094 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Aoyagi, S. et al. A layered ionic crystal of polar Li@C60 superatoms. Nat. Chem. 2, 678–683 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Terminello, L. et al. Unfilled orbitals of C60 and C70 from carbon Okay-shell X-ray absorption nice construction. Chem. Phys. Lett. 182, 491–496 (1991).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Uher, C., Hockey, R. & Ben-Jacob, E. Stress dependence of the c-axis resistivity of graphite. Phys. Rev. B 35, 4483–4488 (1987).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Xu, J. et al. Multi-physics instrument: whole scattering neutron time-of-flight diffractometer at China Spallation Neutron Supply. Nucl. Instrum. Strategies Phys. Res. A 1013, 165642 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Arnold, O. et al. Mantid-data evaluation and visualization bundle for neutron scattering and μ SR experiments. Nucl. Instrum. Strategies Phys. Res. A 764, 156–166 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Huang, S. D., Shang, C., Kang, P. L., Zhang, X. J. & Liu, Z. P. LASP: quick world potential power floor exploration. WIREs Comput. Mol. Sci. 9, e1415 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, X.-J., Shang, C. & Liu, Z.-P. From atoms to fullerene: stochastic floor strolling answer for automated construction prediction of complicated materials. J. Chem. Concept Comput. 9, 3252–3260 (2013).

    See also  Chilean researchers saddened by vote to reject new structure

    Article 
    CAS 

    Google Scholar
     

  • Steinhardt, P. J., Nelson, D. R. & Ronchetti, M. Bond-orientational order in liquids and glasses. Phys. Rev. B 28, 784–805 (1983).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hafner, J. Ab‐initio simulations of supplies utilizing VASP: density‐useful principle and past. J. Comput. Chem. 29, 2044–2078 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Perdew, J. P., Burke, Okay. & Ernzerhof, M. Generalized gradient approximation made easy. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ernzerhof, M. & Scuseria, G. E. ssessment of the Perdew–Burke–Ernzerhof exchange-correlation useful. J. Chem. Phys. 110, 5029–5036 (1999).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Blöchl, P. E. Projector augmented-wave methodology. Phys. Rev. B 50, 17953–17979 (1994).

    Article 
    ADS 

    Google Scholar
     

  • Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A constant and correct ab initio parametrization of density useful dispersion correction (DFT-D) for the 94 parts H-Pu. J. Chem. Phys. 132, 154104 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Sheppard, D., Xiao, P., Chemelewski, W., Johnson, D. D. & Henkelman, G. A generalized solid-state nudged elastic band methodology. J. Chem. Phys. 136, 074103 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Younger, R. A. The Rietveld Technique Vol. 5 (Worldwide Union of Crystallography, 1993).

  • Yates, J. R., Pickard, C. J. & Mauri, F. Calculation of NMR chemical shifts for prolonged methods utilizing ultrasoft pseudopotentials. Phys. Rev. B 76, 024401 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Pickard, C. J. & Mauri, F. All-electron magnetic response with pseudopotentials: NMR chemical shifts. Phys. Rev. B 63, 245101 (2001).

    Article 
    ADS 

    Google Scholar
     

  • Plashkevych, O., Privalov, T., Ågren, H., Carravetta, V. & Ruud, Okay. On the validity of the equal cores approximation for computing X-ray photoemission and photoabsorption spectral bands. Chem. Phys. 260, 11–28 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Li, X., Hua, W., Guo, J. & Luo, Y. Digital construction of nitrogen-doped graphene within the floor and core-excited states from first-principles simulations. J. Phys. Chem. C 119, 16660–16666 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Ma, Y. et al. Native constructions of nitrogen-doped graphdiynes decided by computational X-ray spectroscopy. Carbon 149, 672–678 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Frisch, M. et al. Gaussian 09, Revision D. 01 (Gaussian, 2009).

  • [ad_2]

    RELATED ARTICLES

    Most Popular

    Recent Comments