Monday, July 8, 2024
HomeNature NewsLocus coeruleus exercise improves cochlear implant efficiency

Locus coeruleus exercise improves cochlear implant efficiency

[ad_1]

  • Merzenich, M. M., Michelson, R. P., Pettit, C. R., Schindler, R. A. & Reid, M. Neural encoding of sound sensation evoked by electrical stimulation of the acoustic nerve. Ann. Otol. Rhinol. Laryngol. 82, 486–503 (1973).

    Article 
    CAS 

    Google Scholar
     

  • Chang, S. A. et al. Efficiency time beyond regulation on adults with simultaneous bilateral cochlear implants. J. Am. Acad. Audiol. 21, 35–43 (2010).

    Article 

    Google Scholar
     

  • Tang, L. et al. Rehabilitation and psychosocial determinants of cochlear implant outcomes in older adults. Ear Hear. 38, 663–671 (2017).

    Article 

    Google Scholar
     

  • Nourski, Okay. V. et al. Direct recordings from the auditory cortex in a cochlear implant consumer. J. Assoc. Res. Otolaryngol. 14, 435–450 (2013).

    Article 

    Google Scholar
     

  • Fallon, J. B., Irvine, D. R. & Shepherd, R. Okay. Neural prostheses and mind plasticity. J. Neural Eng. 6, 065008 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Reiss, L. A., Turner, C. W., Karsten, S. A. & Gantz, B. J. Plasticity in human pitch notion induced by tonotopically mismatched electro-acoustic stimulation. Neuroscience 256, 43–52 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Svirsky, M. A., Silveira, A., Neuburger, H., Teoh, S. W. & Suarez, H. Lengthy-term auditory adaptation to a modified peripheral frequency map. Acta. Otolaryngol. 124, 381–386 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Johnson, L. A., Della Santina, C. C. & Wang, X. Selective neuronal activation by cochlear implant stimulation in auditory cortex of awake primate. J. Neurosci. 36, 12468–12484 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Johnson, L. A., Della Santina, C. C. & Wang, X. Representations of time-varying cochlear implant stimulation in auditory cortex of awake marmosets (Callithrix jacchus). J. Neurosci. 37, 7008–7022 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Klinke, R., Kral, A., Heid, S., Tillein, J. & Hartmann, R. Recruitment of the auditory cortex in congenitally deaf cats by long-term cochlear electrostimulation. Science 285, 1729–1733 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Fallon, J. B., Shepherd, R. Okay. & Irvine, D. R. Results of continual cochlear electrical stimulation after an prolonged interval of profound deafness on main auditory cortex group in cats. Eur. J. Neurosci. 39, 811–820 (2014).

    Article 

    Google Scholar
     

  • Isaiah, A., Vongpaisal, T., King, A. J. & Hartley, D. E. Multisensory coaching improves auditory spatial processing following bilateral cochlear implantation. J. Neurosci. 34, 11119–11130 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Blamey, P. et al. Components affecting auditory efficiency of postlinguistically deaf adults utilizing cochlear implants: an replace with 2251 sufferers. Audiol. Neurootol. 18, 36–47 (2013).

    See also  a scientists' information to what’s up there and why

    Article 

    Google Scholar
     

  • Moore, D. R. & Shannon, R. V. Past cochlear implants: awakening the deafened mind. Nat. Neurosci. 12, 686–691 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Glennon, E., Svirsky, M. A. & Froemke, R. C. Auditory cortical plasticity in cochlear implant customers. Curr. Opin. Neurobiol. 60, 108–114 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Lu, W., Xu, J. & Shepherd, R. Okay. Cochlear implantation in rats: a brand new surgical method. Hear. Res. 205, 115–122 (2005).

    Article 

    Google Scholar
     

  • Hancock, Okay. E., Noel, V., Ryugo, D. Okay. & Delgutte, B. Neural coding of interaural time variations with bilateral cochlear implants: results of congenital deafness. J. Neurosci. 30, 14068–14079 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Rosskothen-Kuhl, N. & Illing, R. B. Nonlinear improvement of the populations of neurons expressing c-Fos below sustained electrical intracochlear stimulation within the rat auditory brainstem. Mind Res. 1347, 33–41 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Tillein, J. et al. Cortical illustration of interaural time distinction in congenital deafness. Cereb. Cortex 20, 492–506 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Hancock, Okay. E., Chung, Y. & Delgutte, B. Congenital and extended adult-onset deafness trigger distinct degradations in neural ITD coding with bilateral cochlear implants. J. Assoc. Res. Otolaryngol. 14, 393–411 (2013).

    Article 

    Google Scholar
     

  • Chung, Y., Hancock, Okay. E. & Delgutte, B. Neural coding of interaural time variations with bilateral cochlear implants in unanesthetized rabbits. J. Neurosci. 36, 5520–5531 (2016).

    Article 
    CAS 

    Google Scholar
     

  • King, J., Shehu, I., Roland, J. T. Jr, Svirsky, M. A. & Froemke, R. C. A physiological and behavioral system for listening to restoration with cochlear implants. J. Neurophysiol. 116, 844–858 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Tillein, J., Hubka, P. & Kral, A. Monaural congenital deafness impacts aural dominance and degrades binaural processing. Cereb. Cortex 26, 1762–1777 (2016).

    Article 

    Google Scholar
     

  • Chung, Y., Buechel, B. D., Sunwoo, W., Wagner, J. D. & Delgutte, B. Neural ITD sensitivity and temporal coding with cochlear implants in an animal mannequin of early-onset deafness. J. Assoc. Res. Otolaryngol. 20, 37–56 (2019).

    Article 

    Google Scholar
     

  • Rosskothen-Kuhl, N., Buck, A. N., Li, Okay. & Schnupp, J. W. Microsecond interaural time distinction discrimination restored by cochlear implants after neonatal deafness. eLife 10, e59300 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Martins, A. R. & Froemke, R. C. Coordinated types of noradrenergic plasticity within the locus coeruleus and first auditory cortex. Nat. Neurosci. 18, 1483–1492 (2015).

    Article 
    CAS 

    Google Scholar
     

    See also  4 Methods to Rejoice Wild Koala Day

  • Glennon, E. et al. Locus coeruleus activation accelerates perceptual studying. Mind Res. 1709, 39–49 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Holden, L. Okay. et al. Components affecting open-set phrase recognition in adults with cochlear implants. Ear Hear. 34, 342–360 (2013).

    Article 

    Google Scholar
     

  • Edeline, J. M., Manunta, Y. & Hennevin, E. Induction of selective plasticity within the frequency tuning of auditory cortex and auditory thalamus neurons by locus coeruleus stimulation. Hear. Res. 274, 75–84 (2011).

    Article 

    Google Scholar
     

  • Devilbiss, D. M., Web page, M. E. & Waterhouse, B. D. Locus ceruleus regulates sensory encoding by neurons and networks in waking animals. J. Neurosci. 26, 9860–9872 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Sara, S. J. The locus coeruleus and noradrenergic modulation of cognition. Nat. Rev. Neurosci. 10, 211–223 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Aston-Jones, G. & Cohen, J. D. An integrative principle of locus coeruleus-norepinephrine perform: adaptive achieve and optimum efficiency. Annu. Rev. Neurosci. 28, 403–450 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Sugiyama, D. et al. In vivo patch-clamp recording from locus coeruleus neurones within the rat brainstem. J. Physiol. 590, 2225–2231 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Schultz, W., Dayan, P. & Montague, P. R. A neural substrate of prediction and reward. Science 275, 1593–1599 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Watabe-Uchida, M., Eshel, N. & Uchida, N. Neural circuitry of reward prediction error. Annu. Rev. Neurosci. 40, 373–394 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Kral, A. & Tillein, J. Mind plasticity below cochlear implant stimulation. Adv. Otorhinolaryngol. 64, 89–108 (2006).


    Google Scholar
     

  • Giraud, A. L., Truy, E. & Frackowiak, R. Imaging plasticity in cochlear implant sufferers. Audiol. Neurootol. 6, 381–393 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Irvine, D. R., Fallon, J. B. & Kamke, M. R. Plasticity within the grownup central auditory system. Acoust. Aust. 34, 13–17 (2006).


    Google Scholar
     

  • Carcea, I., Insanally, M. N. & Froemke, R. C. Dynamics of auditory cortical exercise throughout behavioural engagement and auditory notion. Nat. Commun. 8, 14412 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bledsoe, S. C., Nagase, S., Miller, J. M. & Altschuler, R. A. Deafness-induced plasticity within the mature central auditory system. Neuroreport 7, 225–229 (1995).

    Article 

    Google Scholar
     

  • Abbott, S. D., Hughes, L. F., Bauer, C. A., Salvi, R. & Caspary, D. M. Detection of glutamate decarboxylase isoforms in rat inferior colliculus following acoustic publicity. Neuroscience 93, 1375–1381 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Vale, C. & Sanes, D. H. The impact of bilateral deafness on excitatory and inhibitory synaptic energy within the inferior colliculus. Eur. J. Neurosci. 16, 2394–2404 (2002).

    See also  Mastering the artwork of claiming no ought to be a part of a analysis chief’s toolkit

    Article 

    Google Scholar
     

  • Argence, M., Vassias, I., Kerhuel, L., Vidal, P.-P. & de Waele, C. Stimulation by cochlear implant in unilaterally deaf rats reverses the lower of inhibitory transmission within the inferior colliculus. Eur. J. Neurosci. 28, 1589–1602 (2008).

    Article 

    Google Scholar
     

  • Scholl, B. & Wehr, M. Disruption of balanced cortical excitation and inhibition by acoustic trauma. J. Neurophysiol. 100, 646–656 (2008).

    Article 

    Google Scholar
     

  • Rosskothen-Kuhl, N., Hildebrandt, H., Birkenhäger, R. & Illing, R. B. Astrocyte hypertrophy and microglia activation within the rat auditory midbrain is induced by electrical intracochlear stimulation. Entrance. Cell. Neurosci. 12, 43 (2018).

    Article 

    Google Scholar
     

  • Dorrn, A. L., Yuan, Okay., Barker, A. J., Schreiner, C. E. & Froemke, R. C. Developmental sensory expertise balances cortical excitation and inhibition. Nature 465, 932–936 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Froemke, R. C. et al. Lengthy-term modification of cortical synapses improves sensory notion. Nat. Neurosci. 16, 79–88 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Witten, I. B. et al. Recombinase-driver rat traces: instruments, methods, and optogenetic utility to dopamine-mediated reinforcement. Neuron 72, 721–733 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Carter, M. E. et al. Tuning arousal with optogenetic modulation of locus coeruleus neurons. Nat. Neurosci. 13, 1526–1533 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Muller, M. Frequency illustration within the rat cochlea. Hear. Res. 51, 247–254 (1991).

    Article 
    CAS 

    Google Scholar
     

  • Paxinos, G. & Watson, C. The Rat Mind in Stereotaxic Coordinates seventh edn (Tutorial Press, 2013).

  • Feldkamp, L. A., Davis, L. C. & Kress, J. W. Sensible cone-beam algorithm. J. Choose. Soc. Am. A 1, 612–619 (1984).

    Article 
    ADS 

    Google Scholar
     

  • Barrett, J. F. & Keat, N. Artifacts in CT: recognition and avoidance. Radiographics 24, 1679–1691 (2004).

    Article 

    Google Scholar
     

  • Duerinckx, A. J. & Macovski, A. Polychromatic streak artifacts in computed tomography pictures. J. Comput. Help. Tomogr. 2, 481–487 (1978).

    Article 
    CAS 

    Google Scholar
     

  • Joseph, P. M. & Spital, R. D. A technique for correcting bone induced artifacts in computed tomography scanners. J. Comput. Help. Tomogr. 2, 100–108 (1978).

    Article 
    CAS 

    Google Scholar
     

  • Botros, A., van Dijk, B. & Killian, M. AutoNR: an automatic system that measures ECAP thresholds with the Nucleus Freedom cochlear implant by way of machine intelligence. Artif. Intell. Med. 40, 15–28 (2007).

    Article 

    Google Scholar
     

  • [ad_2]

    RELATED ARTICLES

    Most Popular

    Recent Comments