Friday, April 19, 2024
HomeNature NewsLoophole-free Bell inequality violation with superconducting circuits

Loophole-free Bell inequality violation with superconducting circuits

[ad_1]

  • Einstein, A., Podolsky, B. & Rosen, N. Can quantum-mechanical description of bodily actuality be thought of full? Phys. Rev. 48, 696 (1935).

    Article 
    MATH 

    Google Scholar
     

  • Bell, J. S. On the Einstein Podolsky Rosen paradox. Physics 1, 195 (1964).

    Article 
    MathSciNet 

    Google Scholar
     

  • Bell, J. S. in Speakable and Unspeakable in Quantum Mechanics: Collected Papers on Quantum Philosophy 2nd edn, Ch. 24, 232–248 (Cambridge Univ. Press, 2004).

  • Clauser, J. F., Horne, M. A., Shimony, A. & Holt, R. A. Proposed experiment to check native hidden-variable theories. Phys. Rev. Lett. 23, 880 (1969).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Brunner, N., Cavalcanti, D., Pironio, S., Scarani, V. & Wehner, S. Bell nonlocality. Rev. Mod. Phys. 86, 419 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Hensen, B. et al. Loophole-free Bell inequality violation utilizing electron spins separated by 1.3 kilometres. Nature 526, 682–686 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Giustina, M. et al. Vital-loophole-free check of Bell’s theorem with entangled photons. Phys. Rev. Lett. 115, 250401 (2015).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Shalm, L. Okay. et al. Sturdy loophole-free check of native realism. Phys. Rev. Lett. 115, 250402 (2015).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, M.-H. et al. Take a look at of native realism into the previous with out detection and locality loopholes. Phys. Rev. Lett. 121, 080404 (2018).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Rosenfeld, W. et al. Occasion-ready Bell check utilizing entangled atoms concurrently closing detection and locality loopholes. Phys. Rev. Lett. 119, 010402 (2017).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Arute, F. et al. Quantum supremacy utilizing a programmable superconducting processor. Nature 574, 505–510 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kurpiers, P. et al. Deterministic quantum state switch and distant entanglement utilizing microwave photons. Nature 558, 264–267 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Walter, T. et al. Speedy, high-fidelity, single-shot dispersive readout of superconducting qubits. Phys. Rev. Appl. 7, 054020 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Magnard, P. et al. Microwave quantum hyperlink between superconducting circuits housed in spatially separated cryogenic methods. Phys. Rev. Lett. 125, 260502 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Scarani, V. Bell Nonlocality (Oxford Univ. Press, 2019).

    See also  Nature Canada's 50/50 Raffle Finishes Its Closing Draw!
  • Freedman, S. J. & Clauser, J. F. Experimental check of native hidden-variable theories. Phys. Rev. Lett. 28, 938 (1972).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Side, A., Grangier, P. & Roger, G. Experimental realization of Einstein-Podolsky-Rosen-Bohm gedankenexperiment: a brand new violation of Bell’s inequalities. Phys. Rev. Lett. 49, 91 (1982).

    Article 
    ADS 

    Google Scholar
     

  • Larsson, J.-A. Loopholes in Bell inequality exams of native realism. J. Phys. A: Math. Theor. 47, 424003 (2014).

    Article 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Side, A., Dalibard, J. & Roger, G. Experimental check of Bell’s inequalities utilizing time- various analyzers. Phys. Rev. Lett. 49, 1804 (1982).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Weihs, G., Jennewein, T., Simon, C., Weinfurter, H. & Zeilinger, A. Violation of Bell’s inequality beneath strict Einstein locality circumstances. Phys. Rev. Lett. 81, 5039 (1998).

    Article 
    ADS 
    MathSciNet 
    CAS 
    MATH 

    Google Scholar
     

  • Rowe, M. A. et al. Experimental violation of a Bell’s inequality with environment friendly detection. Nature 409, 791–794 (2001).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Side, A. Closing the door on Einstein and Bohr’s quantum debate. Physics 8, 123 (2015).

    Article 

    Google Scholar
     

  • Acín, A. et al. System-independent safety of quantum cryptography towards collective assaults. Phys. Rev. Lett. 98, 230501 (2007).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Šupić, I. & Bowles, J. Self-testing of quantum methods: a evaluation. Quantum 4, 337 (2020).

    Article 

    Google Scholar
     

  • Sekatski, P., Bancal, J.-D., Wagner, S. & Sangouard, N. Certifying the constructing blocks of quantum computer systems from Bell’s theorem. Phys. Rev. Lett. 121, 180505 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Vazirani, U. & Vidick, T. Totally device-independent quantum key distribution. Phys. Rev. Lett. 113, 140501 (2014).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Colbeck, R. Quantum and Relativistic Protocols for Safe Multi-Social gathering Computation. PhD thesis, Univ. Cambridge (2009).

  • Pironio, S. et al. Random numbers licensed by Bell’s theorem. Nature 464, 1021–1024 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Colbeck, R. & Renner, R. Free randomness may be amplified. Nat. Phys. 8, 450–453 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Kessler, M. & Arnon-Friedman, R. System-independent randomness amplification and privatization. IEEE J. Chosen Areas Inf. Idea 1, 568–584 (2020).

    Article 

    Google Scholar
     

    See also  5 Whales You Can See on a Quebec Nature Tour

  • Krinner, S. et al. Realizing repeated quantum error correction in a distance-three floor code. Nature 605, 669–674 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Leggett, A. J. Macroscopic quantum methods and the quantum idea of measurement. Progr. Theor. Phys. Suppl. 69, 80–100 (1980).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Clarke, J. & Wilhelm, F. Okay. Superconducting quantum bits. Nature 453, 1031–1042 (2008).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Martinis, J. M., Devoret, M. H. & Clarke, J. Vitality-level quantization within the zero-voltage state of a current-biased Josephson junction. Phys. Rev. Lett. 55, 1543 (1985).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ansmann, M. et al. Violation of Bell’s inequality in Josephson section qubits. Nature 461, 504–506 (2009).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • The BIG Bell Take a look at Collaboration. Difficult native realism with human decisions. Nature 557, 212–216 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Zhong, Y. P. et al. Violating Bell’s inequality with remotely related superconducting qubits. Nat. Phys. 15, 741–744 (2019).

  • Wootters, W. Okay. Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Horodecki, R., Horodecki, P. & Horodecki, M. Violating Bell inequality by combined spin-12 states: mandatory and ample situation. Phys. Lett. A 200, 340 (1995).

    Article 
    ADS 
    MathSciNet 
    CAS 
    MATH 

    Google Scholar
     

  • Garg, A. & Mermin, N. D. Detector inefficiencies within the Einstein-Podolsky-Rosen experiment. Phys. Rev. D 35, 3831 (1987).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Eberhard, P. H. Background stage and counter efficiencies required for a loophole-free Einstein-Podolsky-Rosen experiment. Phys. Rev. A 47, R747 (1993).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Magnard, P. Meter-Scale Microwave Quantum Networks for Superconducting Circuits. PhD thesis, ETH Zurich (2021).

  • Axline, C. et al. On-demand quantum state switch and entanglement between distant microwave cavity recollections. Nat. Phys. 14, 705–710 (2018).

  • Campagne-Ibarcq, P. et al. Deterministic distant entanglement of superconducting circuits via microwave two-photon transitions. Phys. Rev. Lett. 120, 200501 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kurpiers, P., Walter, T., Magnard, P., Salathe, Y. & Wallraff, A. Characterizing the attenuation of coaxial and rectangular microwave-frequency waveguides at cryogenic temperatures. EPJ Quant. Technol. 4, 8 (2017).

    See also  European Union appeals for interdisciplinary collaboration in new funding mannequin

    Article 

    Google Scholar
     

  • D’Addabbo, A. et al. The CUORE cryostat. J. Low Temp. Phys. 193, 867–875 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Pechal, M. et al. Microwave-controlled technology of formed single photons in circuit quantum electrodynamics. Phys. Rev. X 4, 041010 (2014).


    Google Scholar
     

  • Abellán, C., Amaya, W., Mitrani, D., Pruneri, V. & Mitchell, M. W. Era of recent and pure random numbers for loophole-free Bell exams. Phys. Rev. Lett. 115, 250403 (2015).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Burkhart, L. D. et al. Error-detected state switch and entanglement in a superconducting quantum community. PRX Quantum 2, 030321 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Barrett, J., Hardy, L. & Kent, A. No signalling and quantum key distribution. Phys. Rev. Lett. 95, 010503 (2005).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Peñas, G. F., Puebla, R., Ramos, T., Rabl, P. & García-Ripoll, J. J. Common deterministic quantum operations in microwave quantum hyperlinks. Phys. Rev. Utilized 17, 054038 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Kjaergaard, M. et al. Superconducting qubits: present state of play. Ann. Rev. Condens. Matter Phys. 11, 369–395 (2020).

  • Josephson, B. D. Doable new results in superconductive tunnelling. Phys. Lett. 1, 251–253 (1962).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Koch, J. et al. Cost-insensitive qubit design derived from the Cooper pair field. Phys. Rev. A 76, 042319 (2007).

    Article 
    ADS 

    Google Scholar
     

  • DiCarlo, L. et al. Demonstration of two-qubit algorithms with a superconducting quantum processor. Nature 460, 240–244 (2009).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Blais, A., Grimsmo, A. L., Girvin, S. M. & Wallraff, A. Circuit quantum electrodynamics. Rev. Mod. Phys. 93, 025005 (2021).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Cirac, J. I., Zoller, P., Kimble, H. J. & Mabuchi, H. Quantum state switch and entanglement distribution amongst distant nodes in a quantum community. Phys. Rev. Lett. 78, 3221 (1997).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Scheidl, T. et al. Violation of native realism with freedom of alternative. Proc. Natl Acad. Sci. USA 107, 19708 (2010).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Zhang, Y., Glancy, S. & Knill, E. Asymptotically optimum information evaluation for rejecting native realism. Phys. Rev. A 84, 062118 (2011).

    Article 
    ADS 

    Google Scholar
     

  • [ad_2]

    RELATED ARTICLES

    Most Popular

    Recent Comments