Sunday, July 7, 2024
HomeNature NewsMolecular foundation for selective activation of DREADD-based chemogenetics

Molecular foundation for selective activation of DREADD-based chemogenetics

[ad_1]

  • City, D. J. & Roth, B. L. DREADDs (designer receptors solely activated by designer medication): chemogenetic instruments with therapeutic utility. Annu. Rev. Pharmacol. Toxicol. 55, 399–417 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Roth, B. L. DREADDs for neuroscientists. Neuron 89, 683–694 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roth, B. L. How construction informs and transforms chemogenetics. Curr. Opin. Struct. Biol. 57, 9–16 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, L. et al. Use of DREADD expertise to establish novel targets for antidiabetic medication. Annu. Rev. Pharmacol. Toxicol. 61, 421–440 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Armbruster, B. N., Li, X., Pausch, M. H., Herlitze, S. & Roth, B. L. Evolving the lock to suit the important thing to create a household of G protein-coupled receptors potently activated by an inert ligand. Proc. Natl Acad. Sci. USA 104, 5163–5168 (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boyden, E. S., Zhang, F., Bamberg, E., Nagel, G. & Deisseroth, Okay. Millisecond-timescale, genetically focused optical management of neural exercise. Nat. Neurosci. 8, 1263–1268 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Isberg, V. et al. Generic GPCR residue numbers—aligning topology maps whereas minding the gaps. Tendencies Pharmacol. Sci. 36, 22–31 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu, J. et al. A G protein-biased designer G protein-coupled receptor helpful for finding out the physiological relevance of Gq/11-dependent signaling pathways. J. Biol. Chem. 291, 7809–7820 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nakajima, Okay. & Wess, J. Design and purposeful characterization of a novel, arrestin-biased designer G protein-coupled receptor. Mol. Pharmacol. 82, 575–582 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guettier, J. M. et al. A chemical-genetic method to check G protein regulation of β cell perform in vivo. Proc. Natl Acad. Sci. USA 106, 19197–19202 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Inoue, A. et al. Illuminating G-protein-coupling selectivity of GPCRs. Cell 177, 1933–1947.e25 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bender, D., Holschbach, M. & Stöcklin, G. Synthesis of n.c.a. carbon-11 labelled clozapine and its main metabolite clozapine-N-oxide and comparability of their biodistribution in mice. Nucl. Med. Biol. 21, 921–925 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gomez, J. L. et al. Chemogenetics revealed: DREADD occupancy and activation by way of transformed clozapine. Science 357, 503–507 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jann, M. W., Lam, Y. W. & Chang, W. H. Speedy formation of clozapine in guinea-pigs and man following clozapine-N-oxide administration. Arch. Int. Pharmacodyn. Ther. 328, 243–250 (1994).

    CAS 
    PubMed 

    Google Scholar
     

  • Roth, B. L., Sheffler, D. J. & Kroeze, W. Okay. Magic shotguns versus magic bullets: selectively non-selective medication for temper issues and schizophrenia. Nat. Rev. Drug Discov. 3, 353–359 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Weston, M. et al. Olanzapine: a potent agonist on the hM4D(Gi) DREADD amenable to medical translation of chemogenetics. Sci. Adv. 5, eaaw1567 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nagai, Y. et al. Deschloroclozapine, a potent and selective chemogenetic actuator allows speedy neuronal and behavioral modulations in mice and monkeys. Nat. Neurosci. 23, 1157–1167 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Thompson, Okay. J. et al. DREADD agonist 21 is an efficient agonist for muscarinic-based DREADDs in vitro and in vivo. ACS Pharmacol. Transl. Sci. 1, 61–72 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

    See also  Kidnapping of scientists threatens subject analysis in Papua New Guinea

  • Chen, X. et al. The primary construction–exercise relationship research for designer receptors solely activated by designer medication. ACS Chem. Neurosci. 6, 476–484 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bonaventura, J. et al. Excessive-potency ligands for DREADD imaging and activation in rodents and monkeys. Nat. Commun. 10, 4627 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nehme, R. et al. Mini-G proteins: novel instruments for finding out GPCRs of their lively conformation. PLoS ONE 12, e0175642 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, Okay. et al. Construction of a hallucinogen-activated Gq-coupled 5-HT2A serotonin receptor. Cell 182, 1574–1588.e19 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Garcia-Nafria, J., Nehme, R., Edwards, P. C. & Tate, C. G. Cryo-EM construction of the serotonin 5-HT1B receptor coupled to heterotrimeric Go. Nature 558, 620–623 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, S. et al. Inactive and lively state constructions template selective instruments for the human 5-HT5A receptor. Nat. Struct. Mol. Biol. 29, 677–687 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Duan, J. et al. Cryo-EM construction of an activated VIP1 receptor–G protein advanced revealed by a NanoBiT tethering technique. Nat. Commun. 11, 4121 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maeda, S., Qu, Q., Robertson, M. J., Skiniotis, G. & Kobilka, B. Okay. Buildings of the M1 and M2 muscarinic acetylcholine receptor/G-protein complexes. Science 364, 552–557 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, J. et al. The unconventional activation of the muscarinic acetylcholine receptor M4R by various ligands. Nat. Commun. 13, 2855 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, H. et al. Construction-guided improvement of selective M3 muscarinic acetylcholine receptor antagonists. Proc. Natl Acad. Sci. USA 115, 12046–12050 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thorsen, T. S., Matt, R., Weis, W. I. & Kobilka, B. Okay. Modified T4 lysozyme fusion proteins facilitate G protein-coupled receptor crystallogenesis. Construction 22, 1657–1664 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kruse, A. C. et al. Construction and dynamics of the M3 muscarinic acetylcholine receptor. Nature 482, 552–556 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kenakin, T., Watson, C., Muniz-Medina, V., Christopoulos, A. & Novick, S. A easy technique for quantifying purposeful selectivity and agonist bias. ACS Chem. Neurosci. 3, 193–203 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wess, J., Maggio, R., Palmer, J. R. & Vogel, Z. Position of conserved threonine and tyrosine residues in acetylcholine binding and muscarinic receptor activation. A examine with M3 muscarinic receptor level mutants. J. Biol. Chem. 267, 19313–19319 (1992).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Heitz, F. et al. Web site-directed mutagenesis of the putative human muscarinic M2 receptor binding web site. Eur. J. Pharmacol. 380, 183–195 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nawaratne, V. et al. New insights into the perform of M4 muscarinic acetylcholine receptors gained utilizing a novel allosteric modulator and a DREADD (designer receptor solely activated by a designer drug). Mol. Pharmacol. 74, 1119–1131 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Abdul-Ridha, A., Lane, J. R., Sexton, P. M., Canals, M. & Christopoulos, A. Allosteric modulation of a chemogenetically modified G protein-coupled receptor. Mol. Pharmacol. 83, 521–530 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Haga, Okay. et al. Construction of the human M2 muscarinic acetylcholine receptor certain to an antagonist. Nature 482, 547–551 (2012).

    See also  The battle in opposition to tobacco shouldn't be but received

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jumper, J. et al. Extremely correct protein construction prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McCorvy, J. D. et al. Structural determinants of 5-HT2B receptor activation and biased agonism. Nat. Struct. Mol. Biol. 25, 787–796 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wacker, D., Stevens, R. C. & Roth, B. L. How ligands illuminate GPCR molecular pharmacology. Cell 170, 414–427 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Suno, R. et al. Structural insights into the subtype-selective antagonist binding to the M2 muscarinic receptor. Nat. Chem. Biol. 14, 1150–1158 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Flock, T. et al. Common allosteric mechanism for Gα activation by GPCRs. Nature 524, 173–179 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xia, R. et al. Cryo-EM construction of the human histamine H1 receptor/Gq advanced. Nat. Commun. 12, 2086 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cao, C. et al. Construction, perform and pharmacology of human itch GPCRs. Nature 600, 170–175 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mobbs, J. I. et al. Buildings of the human cholecystokinin 1 (CCK1) receptor certain to Gs and Gq mimetic proteins present perception into mechanisms of G protein selectivity. PLoS Biol. 19, e3001295 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yin, Y. L. et al. Molecular foundation for kinin selectivity and activation of the human bradykinin receptors. Nat. Struct. Mol. Biol. 28, 755–761 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Blin, N., Yun, J. & Wess, J. Mapping of single amino acid residues required for selective activation of Gq/11 by the m3 muscarinic acetylcholine receptor. J. Biol. Chem. 270, 17741–17748 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, P. et al. Structural insights into the lipid and ligand regulation of serotonin receptors. Nature 592, 469–473 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kooistra, A. J. et al. GPCRdb in 2021: integrating GPCR sequence, construction and performance. Nucleic Acids Res. 49, D335–D343 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Y. et al. Molecular recognition of an acyl-peptide hormone and activation of ghrelin receptor. Nat. Commun. 12, 5064 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, X. et al. Buildings of the human cholecystokinin receptors certain to agonists and antagonists. Nat. Chem. Biol. 17, 1230–1237 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Peck, J. V., Fay, J. F. & Strauss, J. D. Excessive-speed high-resolution knowledge assortment on a 200 keV cryo-TEM. IUCrJ 9, 243–252 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mastronarde, D. N. Automated electron microscope tomography utilizing sturdy prediction of specimen actions. J. Struct. Biol. 152, 36–51 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Bepler, T., Kelley, Okay., Noble, A. J. & Berger, B. Topaz-Denoise: common deep denoising fashions for cryoEM and cryoET. Nat. Commun. 11, 5208 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for speedy unsupervised cryo-EM construction willpower. Nat. Strategies 14, 290–296 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Punjani, A., Zhang, H. & Fleet, D. J. Non-uniform refinement: adaptive regularization improves single-particle cryo-EM reconstruction. Nat. Strategies 17, 1214–1221 (2020).

    See also  NASA’s Mars rover makes ‘incredible’ discover in seek for previous life

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rosenthal, P. B. & Henderson, R. Optimum willpower of particle orientation, absolute hand, and distinction loss in single-particle electron cryomicroscopy. J. Mol. Biol. 333, 721–745 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Heymann, J. B. & Belnap, D. M. Bsoft: picture processing and molecular modeling for electron microscopy. J. Struct. Biol. 157, 3–18 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sanchez-Garcia, R. et al. DeepEMhancer: a deep studying answer for cryo-EM quantity post-processing. Commun. Biol. 4, 874 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory analysis and evaluation. J. Comput. Chem. 25, 1605–1612 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Emsley, P. & Cowtan, Okay. Coot: model-building instruments for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Adams, P. D. et al. PHENIX: a complete Python-based system for macromolecular construction answer. Acta Crystallogr. D 66, 213–221 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, V. B. et al. MolProbity: all-atom construction validation for macromolecular crystallography. Acta Crystallogr. D 66, 12–21 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Olsen, R. H. J. et al. TRUPATH, an open-source biosensor platform for interrogating the GPCR transducerome. Nat. Chem. Biol. 16, 841–849 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lomize, M. A., Pogozheva, I. D., Joo, H., Mosberg, H. I. & Lomize, A. L. OPM database and PPM net server: assets for positioning of proteins in membranes. Nucleic Acids Res. 40, D370–D376 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brooks, B. R. et al. CHARMM: the biomolecular simulation program. J. Comput. Chem. 30, 1545–1614 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jo, S., Kim, T., Iyer, V. G. & Im, W. CHARMM-GUI: a web-based graphical consumer interface for CHARMM. J. Comput. Chem. 29, 1859–1865 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, J. et al. CHARMM-GUI enter generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations utilizing the CHARMM36 additive drive discipline. J. Chem. Idea Comput. 12, 405–413 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, E. L. et al. CHARMM-GUI membrane builder towards real looking organic membrane simulations. J. Comput. Chem. 35, 1997–2004 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, J. et al. CHARMM36m: an improved drive discipline for folded and intrinsically disordered proteins. Nat. Strategies 14, 71–73 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Klauda, J. B. et al. Replace of the CHARMM all-atom additive drive discipline for lipids: validation on six lipid varieties. J. Phys. Chem. B 114, 7830–7843 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Case, D. A. et al. AMBER v.2020 (Univ. of California, San Francisco, 2020).

  • Roe, D. R. & Cheatham, T. E. PTRAJ and CPPTRAJ: software program for processing and evaluation of molecular dynamics trajectory knowledge. J. Chem. Idea Comput. 9, 3084–3095 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Humphrey, W., Dalke, A. & Schulten, Okay. VMD: visible molecular dynamics. J. Mol. Graphics 14, 33–38 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Pettersen, E. F. et al. UCSF ChimeraX: construction visualization for researchers, educators, and builders. Protein Sci. 30, 70–82 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • [ad_2]

    RELATED ARTICLES

    Most Popular

    Recent Comments