Tuesday, April 23, 2024
HomeNature NewsNoncoding translation mitigation | Nature

Noncoding translation mitigation | Nature

[ad_1]

  • Ingolia, N. T. et al. Ribosome profiling reveals pervasive translation outdoors of annotated protein-coding genes. Cell Rep. 8, 1365–1379 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ji, Z., Track, R., Regev, A. & Struhl, Ok. Many lncRNAs, 5′UTRs, and pseudogenes are translated and a few are prone to specific useful proteins. eLife 4, e08890 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weatheritt, R. J., Sterne-Weiler, T. & Blencowe, B. J. The ribosome-engaged panorama of other splicing. Nat. Struct. Mol. Biol. 23, 1117–1123 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sudmant, P. H., Lee, H., Dominguez, D., Heiman, M. & Burge, C. B. Widespread accumulation of ribosome-associated remoted 3′ UTRs in neuronal cell populations of the getting older mind. Cell Rep. 25, 2447–2456 e2444 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Adusumalli, S., Ngian, Z. Ok., Lin, W. Q., Benoukraf, T. & Ong, C. T. Elevated intron retention is a post-transcriptional signature related to progressive getting older and Alzheimer’s illness. Getting old Cell 18, e12928 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mazin, P. et al. Widespread splicing adjustments in human mind improvement and getting older. Mol. Syst. Biol. 9, 633 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hsieh, Y. C. et al. Tau-mediated disruption of the spliceosome triggers cryptic RNA splicing and neurodegeneration in Alzheimer’s illness. Cell Rep. 29, 301–316.e310 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dvinge, H. & Bradley, R. Ok. Widespread intron retention diversifies most most cancers transcriptomes. Genome Med. 7, 45 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, S. H. et al. Widespread intronic polyadenylation inactivates tumour suppressor genes in leukaemia. Nature 561, 127–131 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dhamija, S. et al. A pan-cancer evaluation reveals nonstop extension mutations inflicting SMAD4 tumour suppressor degradation. Nat. Cell Biol. 22, 999–1010 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Laumont, C. M. et al. Noncoding areas are the primary supply of targetable tumor-specific antigens. Sci. Transl. Med. 10, eaau5516 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xiang, R. et al. Elevated expression of peptides from non-coding genes in most cancers proteomics datasets suggests potential tumor neoantigens. Commun. Biol. 4, 496 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Good, A. C. et al. Intron retention is a supply of neoepitopes in most cancers. Nat. Biotechnol. 36, 1056–1058 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vakirlis, N. et al. De novo emergence of adaptive membrane proteins from thymine-rich genomic sequences. Nat. Commun. 11, 781 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

    See also  How JWST revolutionized astronomy in 2022

  • Carvunis, A. R. et al. Proto-genes and de novo gene beginning. Nature 487, 370–374 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yordanova, M. M. et al. AMD1 mRNA employs ribosome stalling as a mechanism for molecular reminiscence formation. Nature 553, 356–360 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hashimoto, S., Nobuta, R., Izawa, T. & Inada, T. Translation arrest as a protein high quality management system for aberrant translation of the three′-UTR in mammalian cells. FEBS Lett. 593, 777–787 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Arribere, J. A. et al. Translation readthrough mitigation. Nature 534, 719–723 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kramarski, L. & Arbely, E. Translational read-through promotes aggregation and shapes cease codon identification. Nucleic Acids Res. 48, 3747–3760 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, J. et al. Pervasive useful translation of noncanonical human open studying frames. Science 367, 1140–1146 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van Heesch, S. et al. The translational panorama of the human coronary heart. Cell 178, 242–260.e229 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Djebali, S. et al. Panorama of transcription in human cells. Nature 489, 101–108 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bai, B. et al. U1 small nuclear ribonucleoprotein advanced and RNA splicing alterations in Alzheimer’s illness. Proc. Natl Acad. Sci. USA 110, 16562–16567 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, L. et al. SF3B1 and different novel most cancers genes in power lymphocytic leukemia. N. Engl. J. Med. 365, 2497–2506 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hsu, T. Y. et al. The spliceosome is a therapeutic vulnerability in MYC-driven most cancers. Nature 525, 384–388 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, D. et al. Inhibition of nonsense-mediated RNA decay by the tumor microenvironment promotes tumorigenesis. Mol. Cell. Biol. 31, 3670–3680 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Son, H. G. et al. RNA surveillance by way of nonsense-mediated mRNA decay is essential for longevity in daf-2/insulin/IGF-1 mutant C. elegans. Nat. Commun. 8, 14749 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Solar, Y., Eshov, A., Zhou, J., Isiktas, A. U. & Guo, J. U. C9orf72 arginine-rich dipeptide repeats inhibit UPF1-mediated RNA decay by way of translational repression. Nat. Commun. 11, 3354 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wangen, J. R. & Inexperienced, R. Cease codon context influences genome-wide stimulation of termination codon readthrough by aminoglycosides. eLife 9, e52611 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

    See also  Suppressed basal melting within the japanese Thwaites Glacier grounding zone

  • Dong, C. et al. Intron retention-induced neoantigen load correlates with unfavorable prognosis in a number of myeloma. Oncogene 40, 6130–6138 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin, H. C. et al. C-terminal end-directed protein elimination by CRL2 ubiquitin ligases. Mol. Cell 70, 602–613.e603 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koren, I. et al. The eukaryotic proteome is formed by E3 ubiquitin ligases concentrating on C-terminal degrons. Cell 173, 1622–1635.e1614 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dyson, H. J. & Wright, P. E. Intrinsically unstructured proteins and their features. Nat. Rev. Mol. Cell Biol. 6, 197–208 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, Y. E., Vibranovski, M. D., Landback, P., Marais, G. A. B. & Lengthy, M. Y. Chromosomal redistribution of male-biased genes in mammalian evolution with two bursts of gene acquire on the X chromosome. PLoS Biol. 8, e1000494 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wolfenden, R. V., Cullis, P. M. & Southgate, C. C. Water, protein folding, and the genetic code. Science 206, 575–577 (1979).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Juszkiewicz, S. & Hegde, R. S. Initiation of high quality management throughout poly(A) translation requires site-specific ribosome ubiquitination. Mol. Cell 65, 743–750 e744 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, Z. et al. Systematic comparability of 2A peptides for cloning multi-genes in a polycistronic vector. Sci Rep. 7, 2193 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, T., Wei, J. J., Sabatini, D. M. & Lander, E. S. Genetic screens in human cells utilizing the CRISPR–Cas9 system. Science 343, 80–84 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wunderley, L., Leznicki, P., Payapilly, A. & Excessive, S. SGTA regulates the cytosolic high quality management of hydrophobic substrates. J. Cell Sci. 127, 4728–4739 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shao, S., Rodrigo-Brenni, M. C., Kivlen, M. H. & Hegde, R. S. Mechanistic foundation for a molecular triage response. Science 355, 298–302 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hessa, T. et al. Protein concentrating on and degradation are coupled for elimination of mislocalized proteins. Nature 475, 394–397 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mariappan, M. et al. A ribosome-associating issue chaperones tail-anchored membrane proteins. Nature 466, 1120–1124 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rodrigo-Brenni, M. C., Gutierrez, E. & Hegde, R. S. Cytosolic high quality management of mislocalized proteins requires RNF126 recruitment to Bag6. Mol. Cell 55, 227–237 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu, X. et al. RNF126-mediated reubiquitination is required for proteasomal degradation of p97-extracted membrane proteins. Mol. Cell 79, 320–331.e329 (2020).

    See also  Prejudice in expertise, and the need of time: Books in short

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Q. et al. A ubiquitin ligase-associated chaperone holdase maintains polypeptides in soluble states for proteasome degradation. Mol. Cell 42, 758–770 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leznicki, P. & Excessive, S. SGTA associates with nascent membrane protein precursors. EMBO Rep. 21, e48835 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Akahane, T., Sahara, Ok., Yashiroda, H., Tanaka, Ok. & Murata, S. Involvement of Bag6 and the TRC pathway in proteasome meeting. Nat. Commun. 4, 2234 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Yewdell, J. W. & Nicchitta, C. V. The DRiP speculation decennial: assist, controversy, refinement and extension. Developments Immunol. 27, 368–373 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Minami, R. et al. BAG-6 is important for selective elimination of faulty proteasomal substrates. J. Cell Biol. 190, 637–650 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, L., Kuhls, M. C. & Eisenlohr, L. C. Hydrophobicity as a driver of MHC class I antigen processing. EMBO J. 30, 1634–1644 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brinkman, E. Ok., Chen, T., Amendola, M. & van Steensel, B. Straightforward quantitative evaluation of genome enhancing by sequence hint decomposition. Nucleic Acids Res. 42, e168 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hezroni, H. et al. Rules of lengthy noncoding RNA evolution derived from direct comparability of transcriptomes in 17 species. Cell Rep. 11, 1110–1122 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tareen, A. & Kinney, J. B. Logomaker: lovely sequence logos in Python. Bioinformatics 36, 2272–2274 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Joung, J. et al. Genome-scale CRISPR–Cas9 knockout and transcriptional activation screening. Nat. Protoc. 12, 828–863 (2017).

  • Li, W. et al. MAGeCK permits sturdy identification of important genes from genome-scale CRISPR/Cas9 knockout screens. Genome Biol. 15, 554 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moffat, L. & Jones, D. T. Rising the accuracy of single sequence prediction strategies utilizing a deep semi-supervised studying framework. Bioinformatics 37, 3744–3751 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Osorio, D., Rondon-Villarreal, P. & Torres, R. Peptides: a bundle for knowledge mining of antimicrobial peptides. R J. 7, 4–14 (2015).

    Article 

    Google Scholar
     

  • Miyazawa, S. & Jernigan, R. L. Estimation of efficient interresidue contact energies from protein crystal constructions: quasi-chemical approximation. Macromolecules 18, 534–552 (1985).

    Article 
    CAS 

    Google Scholar
     

  • Lu, S. et al. CDD/SPARCLE: the conserved area database in 2020. Nucleic Acids Res. 48, D265–D268 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • [ad_2]

    RELATED ARTICLES

    Most Popular

    Recent Comments