Friday, June 9, 2023
HomeNature NewsNoncoding translation mitigation | Nature

Noncoding translation mitigation | Nature


  • Ingolia, N. T. et al. Ribosome profiling reveals pervasive translation outdoors of annotated protein-coding genes. Cell Rep. 8, 1365–1379 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ji, Z., Track, R., Regev, A. & Struhl, Ok. Many lncRNAs, 5′UTRs, and pseudogenes are translated and a few are prone to specific useful proteins. eLife 4, e08890 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weatheritt, R. J., Sterne-Weiler, T. & Blencowe, B. J. The ribosome-engaged panorama of other splicing. Nat. Struct. Mol. Biol. 23, 1117–1123 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sudmant, P. H., Lee, H., Dominguez, D., Heiman, M. & Burge, C. B. Widespread accumulation of ribosome-associated remoted 3′ UTRs in neuronal cell populations of the getting older mind. Cell Rep. 25, 2447–2456 e2444 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Adusumalli, S., Ngian, Z. Ok., Lin, W. Q., Benoukraf, T. & Ong, C. T. Elevated intron retention is a post-transcriptional signature related to progressive getting older and Alzheimer’s illness. Getting old Cell 18, e12928 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mazin, P. et al. Widespread splicing adjustments in human mind improvement and getting older. Mol. Syst. Biol. 9, 633 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hsieh, Y. C. et al. Tau-mediated disruption of the spliceosome triggers cryptic RNA splicing and neurodegeneration in Alzheimer’s illness. Cell Rep. 29, 301–316.e310 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dvinge, H. & Bradley, R. Ok. Widespread intron retention diversifies most most cancers transcriptomes. Genome Med. 7, 45 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, S. H. et al. Widespread intronic polyadenylation inactivates tumour suppressor genes in leukaemia. Nature 561, 127–131 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dhamija, S. et al. A pan-cancer evaluation reveals nonstop extension mutations inflicting SMAD4 tumour suppressor degradation. Nat. Cell Biol. 22, 999–1010 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Laumont, C. M. et al. Noncoding areas are the primary supply of targetable tumor-specific antigens. Sci. Transl. Med. 10, eaau5516 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xiang, R. et al. Elevated expression of peptides from non-coding genes in most cancers proteomics datasets suggests potential tumor neoantigens. Commun. Biol. 4, 496 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Good, A. C. et al. Intron retention is a supply of neoepitopes in most cancers. Nat. Biotechnol. 36, 1056–1058 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vakirlis, N. et al. De novo emergence of adaptive membrane proteins from thymine-rich genomic sequences. Nat. Commun. 11, 781 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carvunis, A. R. et al. Proto-genes and de novo gene beginning. Nature 487, 370–374 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yordanova, M. M. et al. AMD1 mRNA employs ribosome stalling as a mechanism for molecular reminiscence formation. Nature 553, 356–360 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hashimoto, S., Nobuta, R., Izawa, T. & Inada, T. Translation arrest as a protein high quality management system for aberrant translation of the three′-UTR in mammalian cells. FEBS Lett. 593, 777–787 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Arribere, J. A. et al. Translation readthrough mitigation. Nature 534, 719–723 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kramarski, L. & Arbely, E. Translational read-through promotes aggregation and shapes cease codon identification. Nucleic Acids Res. 48, 3747–3760 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, J. et al. Pervasive useful translation of noncanonical human open studying frames. Science 367, 1140–1146 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van Heesch, S. et al. The translational panorama of the human coronary heart. Cell 178, 242–260.e229 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Djebali, S. et al. Panorama of transcription in human cells. Nature 489, 101–108 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bai, B. et al. U1 small nuclear ribonucleoprotein advanced and RNA splicing alterations in Alzheimer’s illness. Proc. Natl Acad. Sci. USA 110, 16562–16567 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, L. et al. SF3B1 and different novel most cancers genes in power lymphocytic leukemia. N. Engl. J. Med. 365, 2497–2506 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hsu, T. Y. et al. The spliceosome is a therapeutic vulnerability in MYC-driven most cancers. Nature 525, 384–388 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, D. et al. Inhibition of nonsense-mediated RNA decay by the tumor microenvironment promotes tumorigenesis. Mol. Cell. Biol. 31, 3670–3680 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Son, H. G. et al. RNA surveillance by way of nonsense-mediated mRNA decay is essential for longevity in daf-2/insulin/IGF-1 mutant C. elegans. Nat. Commun. 8, 14749 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Solar, Y., Eshov, A., Zhou, J., Isiktas, A. U. & Guo, J. U. C9orf72 arginine-rich dipeptide repeats inhibit UPF1-mediated RNA decay by way of translational repression. Nat. Commun. 11, 3354 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wangen, J. R. & Inexperienced, R. Cease codon context influences genome-wide stimulation of termination codon readthrough by aminoglycosides. eLife 9, e52611 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dong, C. et al. Intron retention-induced neoantigen load correlates with unfavorable prognosis in a number of myeloma. Oncogene 40, 6130–6138 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin, H. C. et al. C-terminal end-directed protein elimination by CRL2 ubiquitin ligases. Mol. Cell 70, 602–613.e603 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koren, I. et al. The eukaryotic proteome is formed by E3 ubiquitin ligases concentrating on C-terminal degrons. Cell 173, 1622–1635.e1614 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dyson, H. J. & Wright, P. E. Intrinsically unstructured proteins and their features. Nat. Rev. Mol. Cell Biol. 6, 197–208 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, Y. E., Vibranovski, M. D., Landback, P., Marais, G. A. B. & Lengthy, M. Y. Chromosomal redistribution of male-biased genes in mammalian evolution with two bursts of gene acquire on the X chromosome. PLoS Biol. 8, e1000494 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wolfenden, R. V., Cullis, P. M. & Southgate, C. C. Water, protein folding, and the genetic code. Science 206, 575–577 (1979).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Juszkiewicz, S. & Hegde, R. S. Initiation of high quality management throughout poly(A) translation requires site-specific ribosome ubiquitination. Mol. Cell 65, 743–750 e744 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, Z. et al. Systematic comparability of 2A peptides for cloning multi-genes in a polycistronic vector. Sci Rep. 7, 2193 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, T., Wei, J. J., Sabatini, D. M. & Lander, E. S. Genetic screens in human cells utilizing the CRISPR–Cas9 system. Science 343, 80–84 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wunderley, L., Leznicki, P., Payapilly, A. & Excessive, S. SGTA regulates the cytosolic high quality management of hydrophobic substrates. J. Cell Sci. 127, 4728–4739 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shao, S., Rodrigo-Brenni, M. C., Kivlen, M. H. & Hegde, R. S. Mechanistic foundation for a molecular triage response. Science 355, 298–302 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hessa, T. et al. Protein concentrating on and degradation are coupled for elimination of mislocalized proteins. Nature 475, 394–397 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mariappan, M. et al. A ribosome-associating issue chaperones tail-anchored membrane proteins. Nature 466, 1120–1124 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rodrigo-Brenni, M. C., Gutierrez, E. & Hegde, R. S. Cytosolic high quality management of mislocalized proteins requires RNF126 recruitment to Bag6. Mol. Cell 55, 227–237 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu, X. et al. RNF126-mediated reubiquitination is required for proteasomal degradation of p97-extracted membrane proteins. Mol. Cell 79, 320–331.e329 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Q. et al. A ubiquitin ligase-associated chaperone holdase maintains polypeptides in soluble states for proteasome degradation. Mol. Cell 42, 758–770 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leznicki, P. & Excessive, S. SGTA associates with nascent membrane protein precursors. EMBO Rep. 21, e48835 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Akahane, T., Sahara, Ok., Yashiroda, H., Tanaka, Ok. & Murata, S. Involvement of Bag6 and the TRC pathway in proteasome meeting. Nat. Commun. 4, 2234 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Yewdell, J. W. & Nicchitta, C. V. The DRiP speculation decennial: assist, controversy, refinement and extension. Developments Immunol. 27, 368–373 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Minami, R. et al. BAG-6 is important for selective elimination of faulty proteasomal substrates. J. Cell Biol. 190, 637–650 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, L., Kuhls, M. C. & Eisenlohr, L. C. Hydrophobicity as a driver of MHC class I antigen processing. EMBO J. 30, 1634–1644 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brinkman, E. Ok., Chen, T., Amendola, M. & van Steensel, B. Straightforward quantitative evaluation of genome enhancing by sequence hint decomposition. Nucleic Acids Res. 42, e168 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hezroni, H. et al. Rules of lengthy noncoding RNA evolution derived from direct comparability of transcriptomes in 17 species. Cell Rep. 11, 1110–1122 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tareen, A. & Kinney, J. B. Logomaker: lovely sequence logos in Python. Bioinformatics 36, 2272–2274 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Joung, J. et al. Genome-scale CRISPR–Cas9 knockout and transcriptional activation screening. Nat. Protoc. 12, 828–863 (2017).

  • Li, W. et al. MAGeCK permits sturdy identification of important genes from genome-scale CRISPR/Cas9 knockout screens. Genome Biol. 15, 554 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moffat, L. & Jones, D. T. Rising the accuracy of single sequence prediction strategies utilizing a deep semi-supervised studying framework. Bioinformatics 37, 3744–3751 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Osorio, D., Rondon-Villarreal, P. & Torres, R. Peptides: a bundle for knowledge mining of antimicrobial peptides. R J. 7, 4–14 (2015).

    Article 

    Google Scholar
     

  • Miyazawa, S. & Jernigan, R. L. Estimation of efficient interresidue contact energies from protein crystal constructions: quasi-chemical approximation. Macromolecules 18, 534–552 (1985).

    Article 
    CAS 

    Google Scholar
     

  • Lu, S. et al. CDD/SPARCLE: the conserved area database in 2020. Nucleic Acids Res. 48, D265–D268 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments