Friday, July 5, 2024
HomeNature NewsPlant receptor-like protein activation by a microbial glycoside hydrolase

Plant receptor-like protein activation by a microbial glycoside hydrolase

[ad_1]

  • Wan, W. L., Frohlich, Okay., Pruitt, R. N., Nurnberger, T. & Zhang, L. Plant cell floor immune receptor complicated signaling. Curr. Opin. Plant Biol. 50, 18–28 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Jamieson, P. A., Shan, L. & He, P. Plant cell floor molecular cypher: receptor-like proteins and their roles in immunity and improvement. Plant Sci. 274, 242–251 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • van der Burgh, A. M. & Joosten, M. Plant immunity: considering inside and outside the field. Developments Plant Sci. 24, 587–601 (2019).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Liang, X. & Zhou, J. M. Receptor-like cytoplasmic kinases: central gamers in plant receptor kinase-mediated signaling. Annu. Rev. Plant Biol. 69, 267–299 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Track, W., Forderer, A., Yu, D. & Chai, J. Structural biology of plant defence. New Phytol. 229, 692–711 (2020).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Hohmann, U., Lau, Okay. & Hothorn, M. The structural foundation of ligand notion and sign activation by receptor kinases. Annu. Rev. Plant Biol. 68, 109–137 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Fritz-Laylin, L. Okay., Krishnamurthy, N., Tor, M., Sjolander, Okay. V. & Jones, J. D. Phylogenomic evaluation of the receptor-like proteins of rice and Arabidopsis. Plant Physiol. 138, 611–623 (2005).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ma, X., Xu, G., He, P. & Shan, L. SERKing coreceptors for receptors. Developments Plant Sci. 21, 1017–1033 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Chinchilla, D., Shan, L., He, P., de Vries, S. & Kemmerling, B. One for all: the receptor-associated kinase BAK1. Developments Plant Sci. 14, 535–541 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Solar, Y. et al. Structural foundation for flg22-induced activation of the Arabidopsis FLS2-BAK1 immune complicated. Science 342, 624–628 (2013).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Chinchilla, D. et al. A flagellin-induced complicated of the receptor FLS2 and BAK1 initiates plant defence. Nature 448, 497–500 (2007).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gao, M. et al. Regulation of cell loss of life and innate immunity by two receptor-like kinases in Arabidopsis. Cell Host Microbe 6, 34–44 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Liebrand, T. W. et al. Receptor-like kinase SOBIR1/EVR interacts with receptor-like proteins in plant immunity towards fungal an infection. Proc. Natl Acad. Sci. USA 110, 10010–10015 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhang, W. et al. Arabidopsis receptor-like protein30 and receptor-like kinase suppressor of BIR1-1/EVERSHED mediate innate immunity to necrotrophic fungi. Plant Cell 25, 4227–4241 (2013).

    See also  Why it’s value making computational strategies simple to make use of

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Jehle, A. Okay., Furst, U., Lipschis, M., Albert, M. & Felix, G. Notion of the novel MAMP eMax from completely different Xanthomonas species requires the Arabidopsis receptor-like protein ReMAX and the receptor kinase SOBIR. Plant Sign. Behav. 8, e27408 (2013).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Du, J. et al. Elicitin recognition confers enhanced resistance to Phytophthora infestans in potato. Nat. Vegetation 1, 15034 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Albert, I. et al. An RLP23–SOBIR1–BAK1 complicated mediates NLP-triggered immunity. Nat. Vegetation 1, 15140 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Postma, J. et al. Avr4 promotes Cf-4 receptor-like protein affiliation with the BAK1/SERK3 receptor-like kinase to provoke receptor endocytosis and plant immunity. New Phytol. 210, 627–642 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ma, L. & Borhan, M. H. The receptor-like kinase SOBIR1 interacts with Brassica napus LepR3 and is required for Leptosphaeria maculans AvrLm1-triggered immunity. Entrance. Plant Sci. 6, 933 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Y. et al. Leucine-rich repeat receptor-like gene display reveals that Nicotiana RXEG1 regulates glycoside hydrolase 12 MAMP detection. Nat. Commun. 9, 594 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bar, M., Sharfman, M., Ron, M. & Avni, A. BAK1 is required for the attenuation of ethylene-inducing xylanase (Eix)-induced protection responses by the decoy receptor LeEix1. Plant J. 63, 791–800 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Nie, J. et al. A receptor-like protein from Nicotiana benthamiana mediates VmE02 PAMP-triggered immunity. New Phytol. 229, 2260–2272 (2020).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Hegenauer, V. et al. Detection of the plant parasite Cuscuta reflexa by a tomato cell floor receptor. Science 353, 478–481 (2016).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gust, A. A. & Felix, G. Receptor like proteins affiliate with SOBIR1-type of adaptors to type bimolecular receptor kinases. Curr. Opin. Plant Biol. 21, 104–111 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ma, Z. et al. A Phytophthora sojae glycoside hydrolase 12 protein is a serious virulence issue throughout soybean an infection and is acknowledged as a PAMP. Plant Cell 27, 2057–2072 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Huang, J. W. et al. Crystal construction and genetic modifications of FI-CMCase from Aspergillus aculeatus F-50. Biochem. Biophys. Res. Commun. 478, 565–572 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

    See also  5 methods deep studying has reworked picture evaluation

  • Ma, Z. et al. A paralogous decoy protects Phytophthora sojae apoplastic effector PsXEG1 from a bunch inhibitor. Science 355, 710–714 (2017).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Rooney, H. C. et al. Cladosporium Avr2 inhibits tomato Rcr3 protease required for Cf-2-dependent illness resistance. Science 308, 1783–1786 (2005).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ron, M. & Avni, A. The receptor for the fungal elicitor ethylene-inducing xylanase is a member of a resistance-like gene household in tomato. Plant Cell 16, 1604–1615 (2004).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Albert, I., Zhang, L., Bemm, H. & Nurnberger, T. Construction-function evaluation of immune receptor AtRLP23 with its ligand nlp20 and coreceptors AtSOBIR1 and AtBAK1. Mol. Plant Microbe Work together. 32, 1038–1046 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhang, L. S. et al. Distinct immune sensor methods for fungal endopolygalacturonases in intently associated Brassicaceae. Nat. Vegetation 7, 1254–1263 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • She, J. et al. Structural perception into brassinosteroid notion by BRI1. Nature 474, 472–476 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hothorn, M. et al. Structural foundation of steroid hormone notion by the receptor kinase BRI1. Nature 474, 467–471 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wang, J. et al. Allosteric receptor activation by the plant peptide hormone phytosulfokine. Nature 525, 265–268 (2015).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Feehan, J. M., Castel, B., Bentham, A. R. & Jones, J. D. Plant NLRs get by with somewhat assist from their buddies. Curr. Opin. Plant Biol. 56, 99–108 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Van der Hoorn, R. A., Roth, R. & De Wit, P. J. Identification of distinct specificity determinants in resistance protein Cf-4 permits development of a Cf-9 mutant that confers recognition of avirulence protein Avr4. Plant Cell 13, 273–285 (2001).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Martin, R. et al. Construction of the activated ROQ1 resistosome straight recognizing the pathogen effector XopQ. Science 370, 1185–1193 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Sicilia, F. et al. The polygalacturonase-inhibiting protein PGIP2 of Phaseolus vulgaris has advanced a blended mode of inhibition of endopolygalacturonase PG1 of Botrytis cinerea. Plant Physiol. 139, 1380–1388 (2005).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhang, H., Han, Z., Track, W. & Chai, J. Structural perception into recognition of plant peptide hormones by receptors. Mol. Plant 9, 1454–1463 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

    See also  Violent conservation, and your mind on magic: Books briefly

  • Otwinowski, Z. & Minor, W. Processing of X-ray diffraction knowledge collected in oscillation mode. Strategies Enzymol. 276, 307–326 (1997).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Schrodinger, LLC. The PyMOL Molecular Graphics System, Model 2.4.0 (2015); http://www.pymol.org

  • Lei, J. & Frank, J. Automated acquisition of cryo-electron micrographs for single particle reconstruction on an FEI Tecnai electron microscope. J. Struct. Biol. 150, 69–80 (2005).

    PubMed 
    Article 

    Google Scholar
     

  • Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced movement for improved cryo-electron microscopy. Nat. Strategies 14, 331–332 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Grant, T. & Grigorieff, N. Measuring the optimum publicity for single particle cryo-EM utilizing a 2.6 Å reconstruction of rotavirus VP6. eLife 4, e06980 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Mindell, J. A. & Grigorieff, N. Correct dedication of native defocus and specimen tilt in electron microscopy. J. Struct. Biol. 142, 334–347 (2003).

    PubMed 
    Article 

    Google Scholar
     

  • Scheres, S. H. RELION: implementation of a Bayesian strategy to cryo-EM construction dedication. J. Struct. Biol. 180, 519–530 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Scheres, S. H. A Bayesian view on cryo-EM construction dedication. J. Mol. Biol. 415, 406–418 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Scheres, S. H. Processing of structurally heterogeneous cryo-EM knowledge in RELION. Strategies Enzymol. 579, 125–157 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Rosenthal, P. B. & Henderson, R. Optimum dedication of particle orientation, absolute hand, and distinction loss in single-particle electron cryomicroscopy. J. Mol. Biol. 333, 721–745 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kucukelbir, A., Sigworth, F. J. & Tagare, H. D. Quantifying the native decision of cryo-EM density maps. Nat. Strategies 11, 63–65 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Pettersen, E. F. et al. UCSF Chimera–a visualization system for exploratory analysis and evaluation. J. Comput. Chem. 25, 1605–1612 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, Okay. Options and improvement of Coot. Acta Crystallogr. D 66, 486–501 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Adams, P. D. et al. PHENIX: a complete Python-based system for macromolecular construction answer. Acta Crystallogr. D 66, 213–221 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xia, Y. et al. N-glycosylation shields Phytophthora sojae apoplastic effector PsXEG1 from a selected host aspartic protease. Proc. Natl Acad. Sci. USA 117, 27685–27693 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • [ad_2]

    RELATED ARTICLES

    Most Popular

    Recent Comments