Thursday, June 13, 2024
HomeNature NewsAnticyclonic eddies mixture pelagic predators in a subtropical gyre

Anticyclonic eddies mixture pelagic predators in a subtropical gyre

[ad_1]

  • Chaigneau, A., Gizolme, A. & Grados, C. Mesoscale eddies off Peru in altimeter data: identification algorithms and eddy spatio-temporal patterns. Prog. Oceanogr. 79, 106–119 (2008).

    ADS 
    Article 

    Google Scholar
     

  • McGillicuddy, D. J. Jr et al. Affect of mesoscale eddies on new manufacturing within the Sargasso Sea. Nature 394, 263–266 (1998).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Dufois, F. et al. Anticyclonic eddies are extra productive than cyclonic eddies in subtropical gyres due to winter mixing. Sci. Adv. 2, 1–7 (2016).

    Article 

    Google Scholar
     

  • Godø, O. R. et al. Mesoscale eddies are oases for larger trophic marine life. PLoS ONE 7, e30161 (2012).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Chelton, D. B., Gaube, P., Schlax, M. G., Early, J. J. & Samelson, R. M. The affect of nonlinear mesoscale eddies on near-surface oceanic chlorophyll. Science 334, 328–333 (2011).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sarmiento, J. L. et al. Response of ocean ecosystems to local weather warming. International Biogeochem. Cycles 18, GB3003 (2004).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Bell, J. D. et al. Diversifying the usage of tuna to enhance meals safety and public well being in Pacific Island nations and territories. Mar. Coverage 51, 584–591 (2015).

    Article 

    Google Scholar
     

  • Della Penna, A. & Gaube, P. Mesoscale eddies construction mesopelagic communities. Entrance. Mar. Sci. 7, 454 (2020).

    ADS 
    Article 

    Google Scholar
     

  • Braun, C. D. et al. The practical and ecological significance of deep diving by massive marine predators. Ann. Rev. Mar. Sci. 14, 129–159 (2022).

    PubMed 
    Article 

    Google Scholar
     

  • McGillicuddy, D. J. Jr Mechanisms of physical-biological-biogeochemical interplay on the oceanic mesoscale. Ann. Rev. Mar. Sci. 8, 125–159 (2016).

    PubMed 
    Article 

    Google Scholar
     

  • Fennell, S. & Rose, G. Oceanographic influences on deep scattering layers throughout the North Atlantic. Deep-Sea Res. Half I Oceanogr. Res. Pap. 105, 132–141 (2015).

    ADS 
    Article 

    Google Scholar
     

  • Duffy, L. M. et al. International trophic ecology of yellowfin, bigeye, and albacore tunas: understanding predation on micronekton communities at ocean-basin scales. Deep-Sea Res. Half II Topical Stud. Oceanogr. 140, 55–73 (2017).

    ADS 
    Article 

    Google Scholar
     

  • Gaube, P. et al. Mesoscale eddies affect the actions of mature feminine white sharks within the Gulf Stream and Sargasso Sea. Sci. Rep. 8, 7363 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Braun, C. D., Gaube, P., Sinclair-Taylor, T. H., Skomal, G. B. & Thorrold, S. R. Mesoscale eddies launch pelagic sharks from thermal constraints to foraging within the ocean twilight zone. Proc. Natl Acad. Sci. USA 116, 17187–17192 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Doyle, T. Okay. et al. Leatherback turtles satellite-tagged in European waters. Endanger. Species Res. 4, 23–31 (2008).

    Article 

    Google Scholar
     

  • Pauly, D. & Christensen, V. Main manufacturing required to maintain world fisheries. Nature 374, 255–257 (1995).

    See also  On the Floor with GRIT — The Nature Conservancy in Washington

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Lynham, J., Nikolaev, A., Raynor, J., Vilela, T. & Villaseñor-Derbez, J. C. Impression of two of the world’s largest protected areas on longline fishery catch charges. Nat. Commun. 11, 979 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Polovina, J. J., Abecassis, M., Howell, E. A. & Woodworth, P. Will increase within the relative abundance of mid-trophic stage fishes concurrent with declines in apex predators within the subtropical North Pacific, 1996-2006. Fish. Bull. 107, 523–531 (2009).


    Google Scholar
     

  • Royer, T. C. Ocean eddies generated by seamounts within the North Pacific. Science 199, 1063–1064 (1978).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Liu, Y. et al. Eddy evaluation within the subtropical zonal band of the North Pacific Ocean. Deep-Sea Res. Half I Oceanogr. Res. Pap. 68, 54–67 (2012).

    ADS 
    Article 

    Google Scholar
     

  • Bernstein, R. L. & White, W. B. Time and size scales of baroclinic eddies within the central North Pacific Ocean. J. Phys. Oceanogr. 4, 613–624 (1974).

    ADS 
    Article 

    Google Scholar
     

  • Maunder, M. N. & Punt, A. E. Standardizing catch and energy knowledge: a evaluation of latest approaches. Fish. Res. 70, 141–159 (2004).

    Article 

    Google Scholar
     

  • Woodworth, P. A. et al. Eddies as offshore foraging grounds for melon-headed whales (Peponocephala electra). Mar. Mammal Sci. 28, 638–647 (2012).

    Article 

    Google Scholar
     

  • Gaube, P. et al. The usage of mesoscale eddies by juvenile loggerhead sea turtles (Caretta caretta) within the southwestern Atlantic. PLoS ONE 12, e0172839 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Chambault, P. et al. Swirling within the ocean: immature loggerhead turtles seasonally goal previous anticyclonic eddies on the fringe of the North Atlantic Gyre. Prog. Oceanogr. 175, 345–358 (2019).

    ADS 
    Article 

    Google Scholar
     

  • Gaube, P., McGillicuddy Jr, D., Chelton, D., Behrenfeld, M. & Strutton, P. Regional variations within the affect of mesoscale eddies on near-surface chlorophyll. J. Geophys. Res. Oceans 119, 8195–8220 (2014).

  • Waga, H., Kirawake, T. & Ueno, H. Impacts of mesoscale eddies on phytoplankton dimension construction. Geophys. Res. Lett. 46, 13191–13198 (2019).

    ADS 
    Article 

    Google Scholar
     

  • Irigoien, X. et al. Massive mesopelagic fishes biomass and trophic effectivity within the open ocean. Nat. Commun. 5, 3271 (2014).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Chen, Y.-lL. et al. Biologically lively warm-core anticyclonic eddies within the marginal seas of the western Pacific Ocean. Deep Sea Res. Half I 106, 68–84 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Harke, M. J. et al. Microbial group transcriptional patterns fluctuate in response to mesoscale forcing within the North Pacific Subtropical Gyre. Environ. Microbiol. 23, 4807–4822 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hawco, N. J. et al. Iron depletion within the deep chlorophyll most: mesoscale eddies as pure iron fertilization experiments. International Biogeochem. Cycles 35, e2021GB007112 (2021).

    See also  The Nature Podcast Festive Spectacular 2022

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Klevjer, T. A. et al. Massive scale patterns in vertical distribution and behavior of mesopelagic scattering layers. Sci. Rep. 6, 19873 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Behrenfeld, M. J. et al. International satellite-observed every day vertical migrations of ocean animals. Nature 576, 257–261 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Madigan, D. J. et al. Water column construction defines vertical habitat of twelve pelagic predators within the South Atlantic. ICES J. Mar. Sci. 78, 867–883 (2021).

    Article 

    Google Scholar
     

  • Arostegui, M., Gaube, P. & Braun, C. Motion ecology and stenothermy of satellite-tagged shortbill spearfish (Tetrapturus angustirostris). Fish. Res. 215, 21–26 (2019).

    Article 

    Google Scholar
     

  • Lehodey, P., Senina, I. & Murtugudde, R. A spatial ecosystem and populations dynamics mannequin (SEAPODYM)—modeling of tuna and tuna-like populations. Prog. Oceanogr. 78, 304–318 (2008).

    ADS 
    Article 

    Google Scholar
     

  • Varghese, S. P., Somvanshi, V. S. & Dalvi, R. S. Weight loss program composition, feeding area of interest partitioning and trophic organisation of huge pelagic predatory fishes within the jap Arabian Sea. Hydrobiologia 736, 99–114 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Ward, P. & Myers, R. A. Inferring the depth distribution of catchability for pelagic fishes and correcting for variations within the depth of longline fishing gear. Can. J. Fish. Aquat.Sci. 62, 1130–1142 (2005).

    Article 

    Google Scholar
     

  • Kai, E. T. et al. Prime marine predators monitor Lagrangian coherent buildings. Proc. Natl Acad. Sci. USA 106, 8245–8250 (2009).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Lima, I. D., Olson, D. B. & Doney, S. C. Organic response to frontal dynamics and mesoscale variability in oligotrophic environments: organic manufacturing and group construction. J. Geophys. Res. Oceans 107, 25-1–25-21 (2002).

    Article 

    Google Scholar
     

  • Spall, S. A. & Richards, Okay. J. A numerical mannequin of mesoscale frontal instabilities and plankton dynamics—I. mannequin formulation and preliminary experiments. Deep-Sea Res. Half I Oceanogr. Res. Pap. 47, 1261–1301 (2000).

    ADS 
    Article 

    Google Scholar
     

  • Siegelman, L., O’Toole, M., Flexas, M., Rivière, P. & Klein, P. Submesoscale ocean fronts act as organic hotspot for southern elephant seal. Sci. Rep. 9, 5588 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Lévy, M., Ferrari, R., Franks, P. J., Martin, A. P. & Rivière, P. Bringing physics to life on the submesoscale. Geophys. Res. Lett. https://doi.org/10.1029/2012GL052756 (2012).

    Article 

    Google Scholar
     

  • Guidi, L. et al. Does eddy-eddy interplay management floor phytoplankton distribution and carbon export within the North Pacific Subtropical Gyre? J. Geophys. Res. Biogeosciences https://doi.org/10.1029/2012JG001984 (2012).

    Article 

    Google Scholar
     

  • Chow, C. H., Cheah, W., Tai, J. H. & Liu, S. F. Anomalous wind triggered the most important phytoplankton bloom within the oligotrophic North Pacific Subtropical Gyre. Sci. Rep. 9, 15550 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

    See also  How Nature’s Engineers Are Making a Comeback

  • Guo, M., Xiu, P., Chai, F. & Xue, H. Mesoscale and submesoscale contributions to excessive sea floor chlorophyll in subtropical gyres. Geophys. Res. Lett. 46, 13217–13226 (2019).

    ADS 
    Article 

    Google Scholar
     

  • Klein, P. et al. Ocean-scale interactions from area. Earth Area Sci. 6, 795–817 (2019).

    ADS 
    Article 

    Google Scholar
     

  • Martin, A. et al. The oceans’ twilight zone should be studied now, earlier than it’s too late. Nature 580, 26–28 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • St. John, M. A. et al. A darkish gap in our understanding of marine ecosystems and their companies: views from the mesopelagic group. Entrance. Marine Sci. 3, 31 (2016).


    Google Scholar
     

  • Bigelow, Okay., Musyl, M. Okay., Poisson, F. & Kleiber, P. Pelagic longline gear depth and shoaling. Fish. Res. 77, 173–183 (2006).

    Article 

    Google Scholar
     

  • Brodziak, J. & Walsh, W. A. Mannequin choice and multimodel inference for standardizing catch charges of bycatch species: a case research of oceanic whitetip shark within the Hawaii-based longline fishery. Can. J. Fish. Aquat.Sci. 70, 1723–1740 (2013).

    Article 

    Google Scholar
     

  • Woodworth-Jefcoats, P. A., Polovina, J. & Drazen, J. Synergy amongst oceanographic variability, fishery enlargement, and longline catch composition within the central North Pacific Ocean. Fish. Bull. 116, 228–239 (2018).

    Article 

    Google Scholar
     

  • Boggs, C. H. Depth, seize time, and hooked longevity of longline-caught pelagic fish: timing bites of fish with chips. Fish. Bull. 90, 642–658 (1992).


    Google Scholar
     

  • Walsh, W. A. & Brodziak, J. Purposes of Hawaii longline fishery observer and logbook knowledge for inventory evaluation and fishery analysis. NOAA Tech. Memo. 57, 62 (2016).


    Google Scholar
     

  • Walsh, W. A. & Brodziak, J. Billfish CPUE standardization within the Hawaii longline fishery: mannequin choice and multimodel inference. Fish. Res. 166, 151–162 (2015).

    Article 

    Google Scholar
     

  • Gilman, E., Chaloupka, M., Fitchett, M., Cantrell, D. L. & Merrifield, M. Ecological responses to blue water MPAs. PLoS ONE 15, e0235129 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Portner, E. J., Polovina, J. J. & Choy, C. A. Patterns in micronekton range throughout the North Pacific Subtropical Gyre noticed from the food plan of longnose lancetfish (Alepisaurus ferox). Deep-Sea Analysis Half I 125, 40–51 (2017).

    ADS 
    Article 

    Google Scholar
     

  • Brooks, M. E. et al. glmmTMB balances pace and suppleness amongst packages for zero-inflated generalized linear blended modeling. R J. 9, 378–400 (2017).

    Article 

    Google Scholar
     

  • Hartig, F. DHARMa: Residual diagnostics for hierarchical (multi-level/blended) regression fashions. R bundle model 0.3.3.0 http://florianhartig.github.io/DHARMa/ (2020).

  • Jackson, C. H. Multi-state fashions for panel knowledge: the msm bundle for R. J. Stat. Softw. https://doi.org/10.18637/jss.v038.i08 (2011).

    Article 

    Google Scholar
     

  • Bates, D. et al. lme4: Linear mixed-effects fashions utilizing ’Eigen’ and S4. R bundle model 1.1-25 https://github.com/lme4/lme4/ (2020).

  • Lenth, R. et al. emmeans: Estimated marginal means, aka least-squares imply. R bundle model 1.7.2 https://github.com/rvlenth/emmeans (2022).

  • R Core Workforce. R: A Language and Surroundings for Statistical Computing (R Basis for Statistical Computing, 2020); http://www.r-project.org/

  • [ad_2]

    RELATED ARTICLES

    Most Popular

    Recent Comments