Thursday, April 25, 2024
HomeNature NewsChiral assemblies of pinwheel superlattices on substrates

Chiral assemblies of pinwheel superlattices on substrates

[ad_1]

  • Singh, G. et al. Self-assembly of magnetite nanocubes into helical superstructures. Science 345, 1149–1153 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lu, J. et al. Enhanced optical asymmetry in supramolecular chiroplasmonic assemblies with long-range order. Science 371, 1368–1374 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, S. et al. Single- and multi-component chiral supraparticles as modular enantioselective catalysts. Nat. Commun. 10, 4826 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kotov, N. A., Meldrum, F. C., Wu, C. & Fendler, J. H. Monoparticulate layer and Langmuir–Blodgett-type multiparticulate layers of size-quantized cadmium sulfide clusters: a colloid-chemical strategy to superlattice development. J. Phys. Chem. 98, 2735–2738 (1994).

    Article 
    CAS 

    Google Scholar
     

  • Jeong, U., Teng, X., Wang, Y., Yang, H. & Xia, Y. Superparamagnetic colloids: managed synthesis and area of interest purposes. Adv. Mater. 19, 33–60 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Xia, Y. et al. One‐dimensional nanostructures: synthesis, characterization, and purposes. Adv. Mater. 15, 353–389 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Nagaoka, Y., Zhu, H., Eggert, D. & Chen, O. Single-component quasicrystalline nanocrystal superlattices by means of versatile polygon tiling rule. Science 362, 1396–1400 (2018).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Nagaoka, Y. et al. Superstructures generated from truncated tetrahedral quantum dots. Nature 561, 378–382 (2018).

  • Jiang, W. et al. Emergence of complexity in hierarchically organized chiral particles. Science 368, 642–648 (2020).

  • Jenett, B. et al. Discretely assembled mechanical metamaterials. Sci. Adv. 6, eabc9943 (2020).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Frenzel, T., Kadic, M. & Wegener, M. Three-dimensional mechanical metamaterials with a twist. Science 358, 1072–1074 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Feringa, B. L. & Van Delden, R. A. Absolute uneven synthesis: the origin, management, and amplification of chirality. Angew. Chem. Int. Ed. Engl. 38, 3418–3438 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lelais, G. & MacMillan, D. W. Trendy methods in natural catalysis: the arrival and growth of iminium activation. Aldrichimica Acta 39, 79–87 (2006).

    CAS 

    Google Scholar
     

  • Henzie, J., Grünwald, M., Widmer-Cooper, A., Geissler, P. L. & Yang, P. Self-assembly of uniform polyhedral silver nanocrystals into densest packings and unique superlattices. Nat. Mater. 11, 131–137 (2012).

    See also  Woodpeckers: The Gap Story | Uncommon Black Woodpecker Household Caught on Digicam | Nature

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhou, Y. et al. Biomimetic hierarchical meeting of helical supraparticles from chiral nanoparticles. ACS Nano 10, 3248–3256 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kuzyk, A. et al. DNA-based self-assembly of chiral plasmonic nanostructures with tailor-made optical response. Nature 483, 311–314 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Samanta, D., Zhou, W., Ebrahimi, S. B., Petrosko, S. H. & Mirkin, C. A. Programmable matter: the nanoparticle atom and DNA bond. Adv. Mater. 34, e2107875 (2022).

  • Nykypanchuk, D., Maye, M. M., Van Der Lelie, D. & Gang, O. DNA-guided crystallization of colloidal nanoparticles. Nature 451, 549–552 (2008).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Fazileh, F., Chen, X., Gooding, R. J. & Tabunshchyk, Okay. Digital properties of disordered corner-sharing tetrahedral lattices. Phys. Rev. B 73, 035124 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Xu, X. & Wang, X. Perovskite nano‐heterojunctions: synthesis, constructions, properties, challenges, and prospects. Small Struct. 1, 2000009 (2020).

    Article 

    Google Scholar
     

  • Ye, H.-Y. et al. Steel-free three-dimensional perovskite ferroelectrics. Science 361, 151–155 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • He, J., Borisevich, A., Kalinin, S. V., Pennycook, S. J. & Pantelides, S. T. Management of octahedral tilts and magnetic properties of perovskite oxide heterostructures by substrate symmetry. Phys. Rev. Lett. 105, 227203 (2010).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Lu, W. et al. The position of octahedral tilting within the structural section transition and magnetic anisotropy in SrRuO3 skinny movie. J. Appl. Phys. 113, 063901 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Rondinelli, J. M., Might, S. J. & Freeland, J. W. Management of octahedral connectivity in perovskite oxide heterostructures: an rising path to multifunctional supplies discovery. MRS Bull. 37, 261–270 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Smith, P. F. et al. Coordination geometry and oxidation state necessities of corner-sharing MnO6 octahedra for water oxidation catalysis: an investigation of manganite (γ-MnOOH). ACS Catal. 6, 2089–2099 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Haji-Akbari, A. et al. Disordered, quasicrystalline and crystalline phases of densely packed tetrahedra. Nature 462, 773–777 (2009).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Serafin, F., Lu, J., Kotov, N., Solar, Okay. & Mao, X. Pissed off self-assembly of non-Euclidean crystals of nanoparticles. Nat. Commun. 12, 4925 (2021).

    See also  Nature Canada studies again–  Main wins to halt and Reverse Nature loss at COP15!

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Conway, J. H. & Torquato, S. Packing, tiling, and overlaying with tetrahedra. Proc. Natl Acad. Sci. USA 103, 10612–10617 (2006).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Gómez-Graña, S. et al. Surfactant (bi)layers on gold nanorods. Langmuir 28, 1453–1459 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Damasceno, P. F., Engel, M. & Glotzer, S. C. Crystalline assemblies and densest packings of a household of truncated tetrahedra and the position of directional entropic forces. ACS Nano 6, 609–614 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Haji-Akbari, A., Engel, M. & Glotzer, S. C. Part diagram of arduous tetrahedra. J. Chem. Phys. 135, 194101 (2011).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Jin, W., Lu, P. & Li, S. Evolution of the dense packings of spherotetrahedral particles: from superb tetrahedra to spheres. Sci Rep. 5, 15640 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boles, M. A. & Talapin, D. V. Self-assembly of tetrahedral CdSe nanocrystals: efficient “patchiness” by way of anisotropic steric interplay. J. Am. Chem. Soc. 136, 5868–5871 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kuwata-Gonokami, M. et al. Large optical exercise in quasi-two-dimensional planar nanostructures. Phys. Rev. Lett. 95, 227401 (2005).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Nechayev, S., Barczyk, R., Mick, U. & Banzer, P. Substrate-induced chirality in a person nanostructure. ACS Photonics 6, 1876–1881 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Kim, J.-Y. et al. Meeting of gold nanoparticles into chiral superstructures pushed by circularly polarized gentle. J. Am. Chem. Soc. 141, 11739–11744 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Osipov, M. A., Pickup, B. T. & Dunmur, D. A. A brand new twist to molecular chirality: intrinsic chirality indices. Mol. Phys. 84, 1193–1206 (1995).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Feist, A. et al. Quantum coherent optical section modulation in an ultrafast transmission electron microscope. Nature 521, 200–203 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Barwick, B., Flannigan, D. J. & Zewail, A. H. Photon-induced near-field electron microscopy. Nature 462, 902–906 (2009).

    See also  Cash may price us all the pieces: The wealthy world should decide to extra worldwide biodiversity support at NatureCOP

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Piazza, L. et al. Simultaneous commentary of the quantization and the interference sample of a plasmonic near-field. Nat. Commun. 6, 6407 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, H. et al. Visualization of plasmonic couplings utilizing ultrafast electron microscopy. Nano Lett. 21, 5842–5849 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Vinegrad, E. et al. Round dichroism of single particles. ACS Photonics 5, 2151–2159 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Zhu, G. et al. Self-similar mesocrystals type by way of interface-driven nucleation and meeting. Nature 590, 416–422 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, B. H. et al. Vital variations in 3D atomic construction of particular person ligand-protected nanocrystals in answer. Science 368, 60–67 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ou, Z., Wang, Z., Luo, B., Luijten, E. & Chen, Q. Kinetic pathways of crystallization on the nanoscale. Nat. Mater. 19, 450–455 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, C. et al. “Colloid–atom duality” within the meeting dynamics of concave gold nanoarrows. J. Am. Chem. Soc. 142, 11669–11673 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Solar, Okay., Souslov, A., Mao, X. & Lubensky, T. Floor phonons, elastic response, and conformal invariance in twisted kagome lattices. Proc. Natl Acad. Sci. USA 109, 12369–12374 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mao, X. & Lubensky, T. C. Maxwell lattices and topological mechanics. Annu. Rev. Condens. Matter Phys. 9, 413–433 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Zheng, Y. et al. Seed‐mediated synthesis of gold tetrahedra in excessive purity and with tunable, effectively‐managed sizes. Chem. Asian J. 9, 2635–2640 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, S. et al. Enabling full ligand trade on the floor of gold nanocrystals by means of the deposition after which etching of silver. J. Am. Chem. Soc. 140, 11898–11901 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, A. et al. Tip-patched nanoprisms from formation of ligand islands. J. Am. Chem. Soc. 141, 11796–11800 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • [ad_2]

    RELATED ARTICLES

    Most Popular

    Recent Comments