Friday, June 21, 2024
HomeNature NewsCompositionally complicated doping for zero-strain zero-cobalt layered cathodes

Compositionally complicated doping for zero-strain zero-cobalt layered cathodes

[ad_1]

  • Turcheniuk, Okay., Bondarev, D., Singhal, V. & Yushin, G. Ten years left to revamp lithium-ion batteries. Nature 559, 467–470 (2018).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Li, W., Erickson, E. M. & Manthiram, A. Excessive-nickel layered oxide cathodes for lithium-based automotive batteries. Nat. Vitality 5, 26–34 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Li, W., Lee, S. & Manthiram, A. Excessive-nickel NMA: a cobalt-free various to NMC and NCA cathodes for lithium-ion batteries. Adv. Mater. 32, 2002718 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Bi, Y. et al. Reversible planar gliding and microcracking in a single-crystalline Ni-rich cathode. Science 370, 1313–1317 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Liu, H. et al. A disordered rock salt anode for fast-charging lithium-ion batteries. Nature 585, 63–67 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lin, R. et al. Anomalous steel segregation in lithium-rich materials gives design guidelines for steady cathode in lithium-ion battery. Nat. Commun. 10, 1650 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Manthiram, A. & Goodenough, J. B. Layered lithium cobalt oxide cathodes. Nat. Vitality 6, 323–323 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Liu, W. et al. Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries. Angew. Chem. Int. Edn Engl. 54, 4440–4457 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Yan, P. et al. Coupling of electrochemically triggered thermal and mechanical results to worsen failure in a layered cathode. Nat. Commun. 9, 2437 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Yan, P. et al. Tailoring grain boundary constructions and chemistry of Ni-rich layered cathodes for enhanced cycle stability of lithium-ion batteries. Nat. Vitality 3, 600–605 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Bianchini, M., Roca-Ayats, M., Hartmann, P., Brezesinski, T. & Janek, J. There and again once more—the journey of LiNiO2 as a cathode energetic materials. Angew. Chem. Int. Edn Engl. 58, 10434–10458 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Manthiram, A. A mirrored image on lithium-ion battery cathode chemistry. Nat. Commun. 11, 1550 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

    See also  NASA Mars rover to cache first rock samples for supply to Earth

  • Liu, T. et al. Understanding Co roles in direction of creating Co-free Ni-rich cathodes for rechargeable batteries. Nat. Vitality 6, 277–286 (2021).

  • Li, J. et al. Structural origin of the high-voltage instability of lithium cobalt oxide. Nat. Nanotechnol. 16, 599–605 (2021).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Mu, L. et al. Dopant distribution in Co-free high-energy layered cathode supplies. Chem. Mater. 31, 9769–9776 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Mu, L. et al. Structural and electrochemical impacts of Mg/Mn twin dopants on the LiNiO2 cathode in Li-metal batteries. ACS Appl. Mater. Interfaces 12, 12874–12882 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Solar, H. H. et al. Past doping and coating: potential methods for steady high-capacity layered Ni-rich cathodes. ACS Vitality Lett. 5, 1136–1146 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Xie, Q., Li, W. & Manthiram, A. A Mg-doped high-nickel layered oxide cathode enabling safer, high-energy-density Li-ion batteries. Chem. Mater. 31, 938–946 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Wang, C. et al. Resolving atomic-scale part transformation and oxygen loss mechanism in ultrahigh-nickel layered cathodes for cobalt-free lithium-ion batteries. Matter 4, 2013–2026 (2021).

  • Wang, C., Zhang, R., Kisslinger, Okay. & Xin, H. L. Atomic-scale remark of O1 faulted phase-induced deactivation of LiNiO2 at excessive voltage. Nano Lett. 21, 3657–3663 (2021).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Feng, X., Ren, D., He, X. & Ouyang, M. Mitigating thermal runaway of lithium-ion batteries. Joule 4, 743–770 (2020).

  • Yan, P. et al. Intragranular cracking as a crucial barrier for high-voltage utilization of layer-structured cathode for lithium-ion batteries. Nat. Commun. 8, 14101 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zeng, X., Zhan, C., Lu, J. & Amine, Okay. Stabilization of a Excessive-capacity and high-power nickel-based cathode for Li-ion batteries. Chem 4, 690–704 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Huang, Y. et al. Thermal stability and reactivity of cathode supplies for Li-ion batteries. ACS Appl. Mater. Interfaces 8, 7013–7021 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yeh, J. W. et al. Nanostructured high-entropy alloys with a number of principal parts: novel alloy design ideas and outcomes. Adv. Eng. Mater. 6, 299–303 (2004).

    CAS 
    Article 

    Google Scholar
     

    See also  E book assessment – Natures Marvel’s by Jane V. Adams – Mark Avery

  • Zhao, C., Ding, F., Lu, Y., Chen, L. & Hu, Y. S. Excessive-entropy layered oxide cathodes for sodium-ion batteries. Angew. Chem. Int. Edn Engl. 59, 264–269 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Lun, Z. et al. Cation-disordered rocksalt-type high-entropy cathodes for Li-ion batteries. Nat. Mater. 20, 214–221 (2021).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wang, J. et al. Lithium containing layered excessive entropy oxide constructions. Sci. Rep. 10, 18430 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zou, L. et al. Lattice doping regulated interfacial reactions in cathode for enhanced biking stability. Nat. Commun. 10, 3447 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Bak, S.-M. et al. Structural modifications and thermal stability of charged LiNixMnyCozO2 cathode supplies studied by mixed in situ time-resolved XRD and mass spectroscopy. ACS Appl. Mater. Interfaces 6, 22594–22601 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yoon, M. et al. Reactive boride infusion stabilizes Ni-rich cathodes for lithium-ion batteries. Nat. Vitality 6, 362–371 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Xu, J. et al. Understanding the degradation mechanism of lithium nickel oxide cathodes for Li-ion batteries. ACS Appl. Mater. Interfaces 8, 31677–31683 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tian, C. et al. Cost heterogeneity and floor chemistry in polycrystalline cathode supplies. Joule 2, 464–477 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Ohzuku, T., Ueda, A. & Yamamoto, N. Zero‐pressure insertion materials of Li [Li1/3Ti5/3] O4 for rechargeable lithium cells. J. Electrochem. Soc. 142, 1431 (1995).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Funke, H., Scheinost, A. C. & Chukalina, M. Wavelet evaluation of prolonged x-ray absorption advantageous construction knowledge. Phys. Rev. B 71, 094110 (2005).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Li, L. et al. In X-Ray Nanoimaging: Devices and Strategies III vol. 10389 (eds Somogyi, A. & Lai, B.) https://doi.org/10.1117/12.2272585 (Proc. SPIE, Worldwide Society for Optical Engineering, 2017).

  • Solar, X. et al. New phases and part transitions noticed in over-charged states of LiCoO2-based cathode supplies. J. Energy Sources 97-98, 274–276 (2001).

    ADS 
    CAS 
    Article 

    Google Scholar
     

    See also  Gentle does a Möbius strip twist

  • de Picciotto, L. A., Thackeray, M. M., David, W. I. F., Bruce, P. G. & Goodenough, J. B. Structural characterization of delithiated LiVO2. Mater. Res. Bull. 19, 1497–1506 (1984).

    Article 

    Google Scholar
     

  • Zhou, Y.-N. et al. Tuning cost–discharge induced unit cell inhaling layer-structured cathode supplies for lithium-ion batteries. Nat. Commun. 5, 5381 (2014).

    ADS 
    PubMed 
    Article 

    Google Scholar
     

  • Liu, H. et al. Intergranular cracking as a significant explanation for long-term capability fading of layered cathodes. Nano Lett. 17, 3452–3457 (2017).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Watanabe, S., Kinoshita, M., Hosokawa, T., Morigaki, Okay. & Nakura, Okay. Capability fading of LiAlyNi1−x−yCoxO2 cathode for lithium-ion batteries throughout accelerated calendar and cycle life checks (impact of depth of discharge in cost–discharge biking on the suppression of the micro-crack technology of LiAlyNi1−x−yCoxO2 particle). J. Energy Sources 260, 50–56 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • de Biasi, L. et al. Between scylla and charybdis: balancing amongst structural stability and vitality density of layered NCM cathode supplies for superior lithium-ion batteries. J. Phys. Chem. C 121, 26163–26171 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Cui, Z., Xie, Q. & Manthiram, A. Zinc-doped high-nickel, low-cobalt layered oxide cathodes for high-energy-density lithium-ion batteries. ACS Appl. Mater. Interfaces 13, 15324–15332 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lee, S. et al. In-depth evaluation of the degradation mechanisms of high-nickel, low/no-cobalt layered oxide cathodes for lithium-ion batteries. Adv. Vitality Mater. 11, 2100858 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Xie, Q., Cui, Z. & Manthiram, A. Unveiling the stabilities of nickel-based layered oxide cathodes at an equivalent diploma of delithiation in lithium-based batteries. Adv. Mater. 33, 2100804 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Zhou, Okay., Xie, Q., Li, B. & Manthiram, A. An in-depth understanding of the impact of aluminum doping in high-nickel cathodes for lithium-ion batteries. Vitality Storage Mater. 34, 229–240 (2021).

    Article 

    Google Scholar
     

  • Yoon, C. S. et al. Excessive-energy Ni-rich Li[NixCoyMn1–x–y]O2 cathodes by way of compositional partitioning for next-generation electrical automobiles. Chem. Mater. 29, 10436–10445 (2017).

    CAS 
    Article 

    Google Scholar
     

  • [ad_2]

    RELATED ARTICLES

    Most Popular

    Recent Comments