Friday, June 21, 2024
HomeNature NewsMisplaced world of advanced life and the late rise of the eukaryotic...

Misplaced world of advanced life and the late rise of the eukaryotic crown

[ad_1]

  • Butterfield, N. J. Early evolution of the Eukaryota. Palaeontology 58, 5–17 (2015).

    Article 

    Google Scholar
     

  • Gueneli, N. et al. 1.1-Billion-year-old porphyrins set up a marine ecosystem dominated by bacterial major producers. Proc. Natl Acad. Sci. USA 115, E6978–E6986 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Betts, H. C. et al. Built-in genomic and fossil proof illuminates life’s early evolution and eukaryote origin. Nat. Ecol. Evol. 2, 1556–1562 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bloch, Ok. in Blondes in Venetian Work, the 9-Banded Armadillo, and Different Essays in Biochemistry 14–36 (Yale Univ. Press, 1994).

  • Eme, L., Sharpe, S. C., Brown, M. W. & Roger, A. J. On the age of eukaryotes: evaluating proof from fossils and molecular clocks. Chilly Spring Harb. Perspect. Biol. 6, a016139 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Parfrey, L. W., Lahr, D. J. G., Knoll, A. H. & Katz, L. A. Estimating the timing of early eukaryotic diversification with multigene molecular clocks. Proc. Natl Acad. Sci. USA 108, 13624–13629 (2011).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chernikova, D., Motamedi, S., Csuros, M., Koonin, E. & Rogozin, I. A late origin of the extant eukaryotic range: divergence time estimates utilizing uncommon genomic modifications. Biol. Direct 6, 26 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Knoll, A. H. Paleobiological views on early eukaryotic evolution. Chilly Spring Harb. Perspect. Biol. 6, a016121 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Javaux, E. & Knoll, A. Micropaleontology of the decrease Mesoproterozoic Roper Group, Australia, and implications for early eukaryotic evolution. J. Palaeontol. 91, 199–229 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Butterfield, N. J. Bangiomorpha pubescens n. gen., n. sp.: implications for the evolution of intercourse, multicellularity, and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes. Paleobiology 26, 386–404 (2000).

    Article 

    Google Scholar
     

  • Tang, Q., Pang, Ok., Yuan, X. & Xiao, S. A one-billion-year-old multicellular chlorophyte. Nat. Ecol. Evol. 4, 543–549 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Loron, C. C. et al. Early fungi from the Proterozoic period in Arctic Canada. Nature 570, 232–235 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Porter, S. M. & Knoll, H. Testate amoebae within the Neoproterozoic Period: proof from vase-shaped microfossils within the Chuar Group, Grand Canyon. Paleobiology 26, 360–385 (2000).

    Article 

    Google Scholar
     

  • Welander, P. V. Deciphering the evolutionary historical past of microbial cyclic triterpenoids. Free Radical Biol. Med. 140, 270–278 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Brocks, J. J. et al. The rise of algae in Cryogenian oceans and the emergence of animals. Nature 548, 578–581 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zumberge, J. A., Rocher, D. & Love, G. D. Free and kerogen-bound biomarkers from late Tonian sedimentary rocks report considerable eukaryotes in mid-Neoproterozoic marine communities. Geobiology 18, 326–347 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Desmond, E. & Gribaldo, S. Phylogenomics of sterol synthesis: insights into the origin, evolution, and variety of a key eukaryotic function. Genome Biol. Evol. 1, 364–381 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

    See also  Discover Amazement, Awe and Marvel in Nature

  • Grantham, P. J. & Wakefield, L. L. Variations within the sterane carbon quantity distributions of marine supply rock derived crude oils by way of geological time. Org. Geochem. 12, 61–73 (1988).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hoshino, Y. et al. Cryogenian evolution of stigmasteroid biosynthesis. Sci. Adv. 3, e1700887 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pawlowska, M. M., Butterfield, N. J. & Brocks, J. J. Lipid taphonomy within the Proterozoic and the impact of microbial mats on biomarker preservation. Geology 41, 103–106 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Porter, S. M., Agić, H. & Riedman, L. A. Anoxic ecosystems and early eukaryotes. Emerg. High. Life Sci. 2, 299–309 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nguyen, Ok. et al. Absence of biomarker proof for early eukaryotic life from the Mesoproterozoic Roper Group: Looking throughout a marine redox gradient in mid-Proterozoic habitability. Geobiology 17, 247–260 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Porter, S. M. Insights into eukaryogenesis from the fossil report. Interface Focus 10, 20190105 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Anbar, A. D. & Knoll, A. H. Proterozoic ocean chemistry and evolution: a bioinorganic bridge? Science 297, 1137–1142 (2002).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Butterfield, N. J. Oxygen, animals and oceanic air flow: an alternate view. Geobiology 7, 1–7 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brocks, J. J. The transition from a cyanobacterial to algal world and the emergence of animals. Emerg. High. Life Sci. 2, 181–190 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jarrett, A. J. M. et al. Microbial assemblage and paleoenvironmental reconstruction of the 1.3 Ga Velkerri Formation, McArthur Basin, northern Australia. Geobiology 17, 360–380 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bloch, Ok. E. Sterol construction and membrane operate. CRC Crit. Rev. Biochem. 14, 47–92 (1983).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dufourc, E. J. Sterols and membrane dynamics. J. Chem. Biol. 1, 63–77 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brocks, J. J. et al. Biomarker proof for inexperienced and purple sulphur micro organism in a stratified Paleoproterozoic sea. Nature 437, 866–870 (2005).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Summons, R. E. et al. Distinctive hydrocarbon biomarkers from fossiliferous sediments of the Late Proterozoic Walcott Member, Chuar Group, Grand Canyon, Arizona. Geochim. Cosmochim. Acta 52, 2625–2637 (1988).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • van Maldegem, L. M. et al. Geological alteration of Precambrian steroids mimics early animal signatures. Nat. Ecol. Evol. 5, 169–173 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Hoshino, Y. & Gaucher, E. A. Evolution of bacterial steroid biosynthesis and its influence on eukaryogenesis. Proc. Natl Acad. Sci. USA 118, e2101276118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gold, D. A., Caron, A., Fournier, G. P. & Summons, R. E. Paleoproterozoic sterol biosynthesis and the rise of oxygen. Nature 543, 420–423 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wei, J. H., Yin, X. & Welander, P. V. Sterol synthesis in numerous micro organism. Entrance Microbiol 7, 990–990 (2016).

    See also  Entanglement

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, X., Paoletti, M., Izon, G., Fournier, G. & Summons, R. Isotopic proof of photoheterotrophy in Palaeoproterozoic Chlorobi. Preprint at Analysis Sq. https://doi.org/10.21203/rs.3.rs-2444442/v1 (2023).

  • Knoll, A. H., Javaux, E., Hewitt, D. & Cohen, P. Eukaryotic organisms in Proterozoic oceans. Phil. Trans. R. Soc. B 361, 1023–1038 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Anderson, R. H. et al. Sterols decrease energetic limitations of membrane bending and fission vital for environment friendly clathrin-mediated endocytosis. Cell Rep. 37, 110008 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Michellod, D. et al. De novo phytosterol synthesis in animals. Science 380, 520–526 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Gold, D. A. The gradual rise of advanced life as revealed by way of biomarker genetics. Emerg. High. Life Sci. 2, 191–199 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Koumandou, V. L. et al. Molecular paleontology and complexity within the final eukaryotic widespread ancestor. Crit. Rev. Biochem. Mol. Biol. 48, 373–396 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dupont, S., Beney, L., Ferreira, T. & Gervais, P. Nature of sterols impacts plasma membrane conduct and yeast survival throughout dehydration. Biochim. Biophys. Acta 1808, 1520–1528 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rogowska, A. & Szakiel, A. The function of sterols in plant response to abiotic stress. Phytochemistry 19, 1525–1538 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Santalova, E. A. et al. Sterols from six marine sponges. Biochem. Syst. Ecol. 32, 153 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Tillmann, U. Kill and eat your predator: a profitable technique of the planktonic flagellate Prymnesium parvum. Aquat. Microb. Ecol. 32, 73–84 (2003).

    Article 

    Google Scholar
     

  • Brocks, J. J. et al. Early sponges and poisonous protists: potential sources of cryostane, an age diagnostic biomarker antedating Sturtian Snowball Earth. Geobiology 14, 129–149 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Galea, A. M. & Brown, A. J. Particular relationship between sterols and oxygen: have been sterols an adaptation to cardio life? Free Radical Biol. Med. 47, 880 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Canfield, D. E. Oxygen—A 4 Billion Yr Historical past (Princeton Univ. Press, 2014).

  • Planavsky, N. J. et al. Low Mid-Proterozoic atmospheric oxygen ranges and the delayed rise of animals. Science 346, 635–638 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mentel, M. & Martin, W. Vitality metabolism amongst eukaryotic anaerobes in gentle of Proterozoic ocean chemistry. Phil. Trans. R. Soc. B 363, 2717–2729 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mills, D. B. et al. Eukaryogenesis and oxygen in Earth historical past. Nat. Ecol. Evol. 6, 520–532 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Lyons, T. W., Reinhard, C. T. & Planavsky, N. J. The rise of oxygen in Earth’s early ocean and environment. Nature 506, 307–315 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hoffman, P. F. et al. Snowball Earth local weather dynamics and Cryogenian geology–geobiology.Sci. Adv. 3, e1600983 (2017).

    See also  Poor English abilities? New AIs assist researchers to write down higher

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Porter, S. M., Meisterfeld, R. & Knoll, A. H. Vase-shaped microfossils from the Neoproterozoic Chuar Group, Grand Canyon: a classification guided by trendy testate amoebae. J. Paleontol. 77, 409–429 (2003).

    Article 
    ADS 

    Google Scholar
     

  • Gibson, T. M. et al. Exact age of Bangiomorpha pubescens dates the origin of eukaryotic photosynthesis. Geology 46, 135–138 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Butterfield, N. J., Knoll, A. H. & Swett, Ok. A bangiophyte purple alga from the Proterozoic of arctic Canada. Science 250, 104–107 (1990).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Butterfield, N. J. Proterozoic photosynthesis—a crucial assessment. Palaeontology 58, 953–972 (2015).

    Article 

    Google Scholar
     

  • Beghin, J. et al. Microfossils from the late Mesoproterozoic–early Neoproterozoic Atar/El Mreïti Group, Taoudeni Basin, Mauritania, northwestern Africa. Precambrian Res. 291, 63–82 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • French, Ok. L. et al. Reappraisal of hydrocarbon biomarkers in Archean rocks. Proc. Natl Acad. Sci. USA 112, 5915–5920 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jarrett, A., Schinteie, R., Hope, J. M. & Brocks, J. J. Micro-ablation, a brand new approach to take away drilling fluids and different contaminants from fragmented and fissile rock materials. Org. Geochem. 61, 57–65 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Brocks, J. J. Millimeter-scale focus gradients of hydrocarbons in Archean shales: live-oil escape or fingerprint of contamination? Geochim. Cosmochim. Acta 75, 3196–3213 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Schinteie, R. et al. Affect of drill core contamination on compound-specific carbon and hydrogen isotopic signatures. Org. Geochem. 128, 161–171 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Schinteie, R. & Brocks, J. J. Proof for historical halophiles? Testing biomarker syngeneity of evaporites from Neoproterozoic and Cambrian strata. Org. Geochem. 72, 46–58 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Brocks, J. J., Grosjean, E. & Logan, G. A. Assessing biomarker syngeneity utilizing branched alkanes with quaternary carbon (BAQCs) and different plastic contaminants. Geochim. Cosmochim. Acta 72, 871–888 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Brocks, J. J. & Hope, J. M. Tailing of chromatographic peaks in GC–MS brought on by interplay of halogenated solvents with the ion supply. J. Chromatogr. Sci. 52, 471–475 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Holba, A. G. et al. Utility of tetracyclic polyprenoids as indicators of enter from fresh-brackish water environments. Org. Geochem. 34, 441–469 (2003).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Peters, Ok. E., Walters, C. C. & Moldowan, J. M. The Biomarker Information Vol. 2, 2nd edn (Cambridge Univ. Press, 2004).

  • Wang, X. et al. Oxygen, local weather and the chemical evolution of a 1400 million 12 months previous tropical marine setting. Am. J. Sci. 317, 861–900 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhang, S. et al. Ample oxygen for animal respiration 1,400 million years in the past. Proc. Natl Acad. Sci. USA 113, 1731–1736 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • [ad_2]

    RELATED ARTICLES

    Most Popular

    Recent Comments