Friday, July 26, 2024
HomeNature NewsUnveiling the transition from area of interest to dispersal meeting in ecology

Unveiling the transition from area of interest to dispersal meeting in ecology

[ad_1]

  • MacArthur, R. H. & Wilson, E. O. An equilibrium idea of insular zoogeography. Evolution 17, 373–387 (1963).

    Article 

    Google Scholar
     

  • Macarthur, R. H. & Wilson, E. O. The Concept of Island Biogeography (Princeton Univ. Press, 1967).

  • Chisholm, R. A., Fung, T., Chimalakonda, D. & O’Dwyer, J. P. Upkeep of biodiversity on islands. Proc. R. Soc. B: Biol. Sci. 283, 20160102 (2016).

    Article 

    Google Scholar
     

  • Chisholm, R. A. & Fung, T. Inspecting the generality of the biphasic transition from niche-structured to immigration-structured communities. Theor. Ecol. 15, 1–16 (2022).

    Article 

    Google Scholar
     

  • Schrader, J., Moeljono, S., Keppel, G. & Kreft, H. Crops on small islands revisited: the consequences of spatial scale and habitat high quality on the species–space relationship. Ecography 42, 1405–1414 (2019).

    Article 

    Google Scholar
     

  • Hubbell, S. P. The Unified Impartial Concept of Biodiversity and Biogeography (Princeton Univ. Press, 2001).

  • Shmida, A. V. I. & Wilson, M. V. Organic determinants of species range. J. Biogeogr. 12, 1–20 (1985).

    Article 

    Google Scholar
     

  • Leibold, M. A. & McPeek, M. A. Coexistence of the area of interest and impartial views in neighborhood ecology. Ecology 87, 1399–1410 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Chase, J. M. & Myers, J. A. Disentangling the significance of ecological niches from stochastic processes throughout scales. Philos. Trans. R. Soc. B 366, 2351–2363 (2011).

    Article 

    Google Scholar
     

  • Chase, J. M. et al. Embracing scale‐dependence to attain a deeper understanding of biodiversity and its change throughout communities. Ecol. Lett. 21, 1737–1751 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Leibold, M. A. et al. The metacommunity idea: a framework for multi‐scale neighborhood ecology. Ecol. Lett. 7, 601–613 (2004).

    Article 

    Google Scholar
     

  • Tilman, D. Area of interest tradeoffs, neutrality, and neighborhood construction: a stochastic idea of useful resource competitors, invasion, and neighborhood meeting. Proc. Natl Acad. Sci. USA 101, 10854–10861 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Kadmon, R. & Allouche, O. Integrating the consequences of space, isolation, and habitat heterogeneity on species range: a unification of island biogeography and area of interest idea. Am. Nat. 170, 443–454 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • MacArthur, R. H. Patterns of species range. Biol. Rev. 40, 510–533 (1965).

    Article 

    Google Scholar
     

  • Wilson, E. O. The species equilibrium. Brookhaven Sym. Biol. 22, 38–47 (1969).

    CAS 

    Google Scholar
     

  • Wright, S. J. Intra-archipelago vertebrate distributions: the slope of the species-area relation. Am. Nat. 118, 726–748 (1981).

    Article 

    Google Scholar
     

  • Lomolino, M. V. & Weiser, M. D. In the direction of a extra basic species-area relationship: range on all islands, nice and small. J. Biogeogr. 28, 431–445 (2001).

    Article 

    Google Scholar
     

  • Diamond, J. M. in Ecology and Evolution of Communities (eds Cody, M. L. & Diamond, J. M.) 342–444 (Harvard Univ. Press, 1975).

  • Hanski, I. Dynamics of regional distribution: the core and satellite tv for pc species speculation. Oikos 38, 210–221 (1982).

    See also  Unearned authorship pervades science

    Article 

    Google Scholar
     

  • Pulliam, H. R. Sources, sinks, and inhabitants regulation. Am. Nat. 132, 652–661 (1988).

    Article 

    Google Scholar
     

  • Paine, R. T. & Vadas, R. L. The results of grazing by sea urchins, Strongylocentrotus spp., on benthic algal populations 1. Limnol. Oceanogr. 14, 710–719 (1969).

    Article 
    ADS 

    Google Scholar
     

  • Lubchenco, J. & Menge, B. A. Neighborhood growth and persistence in a low rocky intertidal zone. Ecol. Monogr. 48, 67–94 (1978).

    Article 

    Google Scholar
     

  • Bertness, M. D., Leonard, G. H., Levine, J. M., Schmidt, P. R. & Ingraham, A. O. Testing the relative contribution of constructive and unfavorable interactions in rocky intertidal communities. Ecology 80, 2711–2726 (1999).

    Article 

    Google Scholar
     

  • Hawkins, S. J., Pack, Ok. E., Hyder, Ok., Benedetti-Cecchi, L. & Jenkins, S. R. Rocky shores as tractable check techniques for experimental ecology. J. Mar. Biol. Assoc. UK 100, 1017–1041 (2020).

    Article 

    Google Scholar
     

  • Loke, L. H. L. & Todd, P. A. Structural complexity and element kind enhance intertidal biodiversity independently of space. Ecology 97, 383–393 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Loke, L. H. L., Chisholm, R. A. & Todd, P. A. Results of habitat space and spatial configuration on biodiversity in an experimental intertidal neighborhood. Ecology 100, e02757 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Hartanto, R. S. et al. Materials kind weakly impacts algal colonisation however not macrofaunal neighborhood in a synthetic intertidal habitat. Ecol. Eng. 176, 106514 (2022).

    Article 

    Google Scholar
     

  • Levine, J. M. & HilleRisLambers, J. The significance of niches for the upkeep of species range. Nature 461, 254–257 (2009).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Friedman, J., Higgins, L. M. & Gore, J. Neighborhood construction follows easy meeting guidelines in microbial microcosms. Nat. Ecol. Evol. 1, 1–7 (2017).

    Article 

    Google Scholar
     

  • Triantis, Ok. A. & Sfenthourakis, S. Island biogeography just isn’t a single‐variable self-discipline: the small island impact debate. Divers. Distrib. 18, 92–96 (2012).

    Article 

    Google Scholar
     

  • Preston, F. W. The canonical distribution of commonness and rarity: half I. Ecology 43, 185–215 (1962).

    Article 

    Google Scholar
     

  • Armstrong, R. A. & McGehee, R. Aggressive exclusion. Am. Nat. 115, 151–170 (1980).

    Article 
    MathSciNet 

    Google Scholar
     

  • Huisman, J. & Weissing, F. J. Biodiversity of plankton by species oscillations and chaos. Nature 402, 407–410 (1999).

    Article 
    ADS 

    Google Scholar
     

  • Chesson, P. Mechanisms of upkeep of species range. Annu. Rev. Ecol. Syst. 31, 343–366 (2000).

    Article 

    Google Scholar
     

  • Schippers, P., Verschoor, A. M., Vos, M. & Mooij, W. M. Does “supersaturated coexistence” resolve the “paradox of the plankton”? Ecol. Lett. 4, 404–407 (2001).

    Article 

    Google Scholar
     

  • Lai, S., Loke, L. H. L., Bouma, T. J. & Todd, P. A. Biodiversity surveys and steady isotope analyses reveal key variations in intertidal assemblages between tropical seawalls and rocky shores. Mar. Ecol. Prog. Ser. 587, 41–53 (2018).

    See also  Gigantic map of fly mind is a primary for a posh animal

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Lim, L. J. W. et al. Variety and distribution of intertidal marine species in Singapore. Singapore. Raffles Bull. Zool. 68, 396–403 (2020).

    ADS 

    Google Scholar
     

  • Turner, I. M. The Ecology of Bushes within the Tropical Rain Forest (Cambridge Univ. Press, 2001).

  • Terborgh, J. Utilizing Janzen–Connell to foretell the implications of defaunation and different disturbances of tropical forests. Biol. Conserv. 163, 7–12 (2013).

    Article 

    Google Scholar
     

  • Descamps-Julien, B. & Gonzalez, A. Secure coexistence in a fluctuating surroundings: an experimental demonstration. Ecology 86, 2815–2824 (2005).

    Article 

    Google Scholar
     

  • Levi, M. R. & Bestelmeyer, B. T. Digital soil mapping for fireplace prediction and administration in rangelands. Hearth Ecol. 14, 1–12 (2018).

    Article 

    Google Scholar
     

  • Chisholm, R. A. & Fung, T. Janzen-Connell results are a weak obstacle to aggressive exclusion. Am. Nat. 196, 649–661 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Morris, R. L. et al. Design choices, implementation points and evaluating success of ecologically engineered shorelines. Oceanogr. Mar. Biol. 57, 169–228 (2019).

    Article 

    Google Scholar
     

  • Cohen-Shacham, E., Walters, G., Janzen, C. & Maginnis, S. Nature-based Options to Handle International Societal Challenges (IUCN, Gland, Switzerland, 2016).

  • Cordonnier, T., Kunstler, G., Courbaud, B. & Morin, X. Managing tree species range and ecosystem capabilities by way of coexistence mechanisms. Ann. For. Sci. 75, 1–11 (2018).

    Article 

    Google Scholar
     

  • Tilman, D. Checks of useful resource competitors idea utilizing 4 species of Lake Michigan algae. Ecology 62, 802–815 (1981).

    Article 

    Google Scholar
     

  • Fargione, J., Brown, C. S. & Tilman, D. Neighborhood meeting and invasion: an experimental check of impartial versus area of interest processes. Proc. Natl Acad. Sci. USA 100, 8916–8920 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Hubbell, S. P. Impartial idea in neighborhood ecology and the speculation of useful equivalence. Funct. Ecol. 19, 166–172 (2005).

    Article 

    Google Scholar
     

  • Volkov, I., Banavar, J. R., Hubbell, S. P. & Maritan, A. Patterns of relative species abundance in rainforests and coral reefs. Nature 450, 45–49 (2007).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Dornelas, M., Connolly, S. R. & Hughes, T. P. Coral reef range refutes the impartial idea of biodiversity. Nature 440, 80–82 (2006).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Lai, S., Loke, L. H. L., Hilton, M. J., Bouma, T. J. & Todd, P. A. The results of urbanisation on coastal habitats and the potential for ecological engineering: a Singapore case examine. Ocean Coast. Handle. 103, 78–85 (2015).

    Article 

    Google Scholar
     

  • Local weather of Singapore. Meteorological Service Singapore http://www.climate.gov.sg/climate-climate-of-singapore/ (2022).

  • Van Maren, D. S. & Gerritsen, H. Residual movement and tidal asymmetry within the Singapore Strait, with implications for resuspension and residual transport of sediment. J. Geophys. Res. 117, C04021 (2012).

    ADS 

    Google Scholar
     

  • Chapman, M. G. & Bulleri, F. Intertidal seawalls—new options of panorama in intertidal environments. Landsc. City Plan. 62, 159–172 (2003).

    See also  Menopause is pushed by the mind, not simply the ovaries

    Article 

    Google Scholar
     

  • Davis, J., Levin, L. & Walther, S. Synthetic armored shorelines: websites for open-coast species in a southern California bay. Mar. Biol. 140, 1249–1262 (2002).

    Article 

    Google Scholar
     

  • Lee, A. C. & Sin, T. M. Intertidal assemblages on coastal defence buildings in Singapore II. Contrasts between islands and the mainland. Raffles Bull. Zool. 22, 255–268 (2009).


    Google Scholar
     

  • Loke, L. H. L., Liao, L. M., Bouma, T. J. & Todd, P. A. Succession of seawall algal communities on synthetic substrates. Raffles Bull. Zool. 32, 1–10 (2016).


    Google Scholar
     

  • Hsiung, A. R. et al. Little proof that reducing the pH of concrete helps higher biodiversity on tropical and temperate seawalls. Mar. Ecol. Prog. Ser. 656, 193–205 (2020).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Kaehler, S. & Williams, G. A. Early growth of algal assemblages underneath completely different regimes of bodily and biotic elements on a seasonal tropical rocky shore. Mar. Ecol. Prog. Ser. 172, 61–71 (1998).

    Article 
    ADS 

    Google Scholar
     

  • Williams, G. A., Davies, M. S. & Nagarkar, S. Major succession on a seasonal tropical rocky shore: the relative roles of spatial heterogeneity and herbivory. Mar. Ecol. Prog. Ser. 203, 81–94 (2000).

    Article 
    ADS 

    Google Scholar
     

  • Tan, S. Ok. Land Reclamation in Singapore (Nationwide College of Singapore, Singapore, 1976).

  • Hilton, M. J. & Chou, L. M. Sediment facies of a low‐power, meso‐tidal, fringing reef, Singapore. Singap. J. Trop. Geogr. 20, 111–130 (1999).

    Article 

    Google Scholar
     

  • Zhao, Ok. et al. Modelling floor temperature of granite seawalls in Singapore. Case Stud. Therm. Eng. 13, 100395 (2019).

    Article 

    Google Scholar
     

  • Loke, L. H. L., Bouma, T. J. & Todd, P. A. The results of manipulating microhabitat measurement and variability on tropical seawall biodiversity: subject and flume experiments. J. Exp. Mar. Biol. Ecol. 492, 113–120 (2017).

    Article 

    Google Scholar
     

  • Pressure, E. M. et al. A worldwide evaluation of complexity–biodiversity relationships on marine synthetic buildings. Glob. Ecol. Biogeogr. 30, 140–153 (2021).

    Article 

    Google Scholar
     

  • R Core Group. R: A Language and Atmosphere for Statistical Computing (R Basis for Statistical Computing, 2022); https://www.r-project.org/.

  • Schoener, T. W. Competitors and the type of habitat shift. Theor. Popul. Biol. 6, 265–307 (1974).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Chisholm, R. A. & Pacala, S. W. Area of interest and impartial fashions predict asymptotically equal species abundance distributions in high-diversity ecological communities. Proc. Natl Acad. Sci. USA 107, 15821–15825 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Chisholm, R. A. & Pacala, S. W. Concept predicts a speedy transition from niche-structured to impartial biodiversity patterns throughout a speciation-rate gradient. Theor. Ecol. 4, 195–200 (2011).

    Article 

    Google Scholar
     

  • Abramowitz, M. & Stegun, I. A. Handbook of Mathematical Capabilities with Formulation, Graphs, and Mathematical Tables (Dover, 1972).

  • [ad_2]

    RELATED ARTICLES

    Most Popular

    Recent Comments